Sains Malaysiana 46(9)(2017): 1641–1650
http://dx.doi.org/10.17576/jsm-2017-4609-37
An
Overview of the Present Stability and Performance of EOR-Foam
(Gambaran Keseluruhan Kestabilan Semasa dan
Prestasi EOR-Buih)
MOHAMMED FALALU HAMZA, CHANDRA MOHAN SINNATHAMBI*, ZULKIFLI MERICAN ALJUNID MERICAN, HASSAN SOLEIMANI
& STEPHEN KARL D.
1Center of Research in
Enhanced Oil Recovery (COREOR), Universiti Teknologi Petronas
32610 Bandar Seri
Iskandar, Perak Darul Ridzuan, Malaysia
2Fundamental and
Applied Sciences Department, Universiti Teknologi Petronas
32610 Bandar Seri
Iskandar, Perak Darul Ridzuan, Malaysia
Received: 17 January
2017/Accepted: 8 April 2017
ABSTRACT
Foam
flooding technique, commonly known as foam assisted water alternating gas
method (FAWAG) has been identified as an effective chemical
enhanced oil recovery (CEOR) technique. The ability of EOR-foam
to sweep oil in low permeable zones makes it important displacement fluid in
the oil industry. However, extreme reservoir conditions such as temperature,
pressure and salinity have detrimental effects on the stability and the overall
performance of the EOR-foam. Consequently, understanding
foam stability and performance under different conditions is crucial for long
term oil field application. This paper discusses the current status of the EOR-foam
stability, performance and challenges from laboratory studies to field
application perspective. The paper also highlights the knowledge gaps which
require further research for successful field application.
Keywords: EOR-foam;
foam application; foams performance; foam stability
ABSTRAK
Teknik
banjir buih, biasanya dikenali sebagai kaedah air berselang-seli gas berbantu
buih (FAWAG) telah dikenal pasti sebagai satu teknik pemulihan
(CEOR)
minyak tertingkat kimia yang berkesan. Keupayaan EOR-buih
untuk menyapu minyak di zon rendah boleh telap menjadikan ia cecair anjakan
penting dalam industri minyak. Walau bagaimanapun, keadaan melampau takungan
seperti suhu, tekanan dan kemasinan mempunyai kesan yang memudaratkan terhadap
kestabilan dan prestasi keseluruhan EOR-buih itu. Oleh yang
demikian, kefahaman tentang kestabilan buih dan prestasi di bawah keadaan yang
berbeza adalah penting untuk jangka masa panjang bidang aplikasi minyak. Kertas
ini membincangkan status semasa kestabilan EOR-buih,
prestasi serta cabaran daripada ujian makmal bidang kepada perspektif aplikasi
lapangan. Kertas ini juga menyerlahkan jurang pengetahuan yang memerlukan
kajian lanjut untuk aplikasi lapangan ini berjaya.
Kata kunci: Aplikasi buih; EOR-buih; kestabilan buih;
prestasi buih
REFERENCES
Aghdam,
K.A., Moghaddas, J. & Moradi, B. 2013. An investigation of the effect of
using foam in WAG injection in an Iranian oil reservoir. Petroleum Science
and Technology 31(21): 2228-2236.
Ahmadi,
M.A. & Sheng, J. 2016. Performance improvement of ionic surfactant flooding
in carbonate rock samples by use of nanoparticles. Petroleum Science 13(4):
725-736.
Ahmadi,
M.A. & Shadizadeh, S.R. 2013. Induced effect of adding nano silica on
adsorption of a natural surfactant onto sandstone rock: Experimental and
theoretical study. Journal of Petroleum Science and Engineering 112:
239-247.
Ahmadi,
Y., Eshraghi, S.E., Bahrami, P., Hasanbeygi, M., Kazemzadeh, Y. & Vahedian,
A. 2015. Comprehensive Water-Alternating-Gas (WAG) injection study to evaluate
the most effective method based on heavy oil recovery and asphaltene
precipitation tests. Journal of Petroleum Science and Engineering 133:
123-129.
Al-Hadhrami,
H.S. & Blunt, M.J. 2000. Thermally induced wettability alteration to
improve oil recovery in fractured reservoirs. SPE/DOE Improved Oil Recovery
Symposium. Society of Petroleum Engineers. pp. 1-9.
Alvarado,
V. & Manrique, E. 2010. Enhanced oil recovery: An update review. Energies 3(9): 1529-1575.
Buchgraber,
M., Castanier, L.M. & Kovscek, A.R. 2012. Microvisual investigation of foam
flow in ideal fractures: Role of fracture aperture and surface roughness. SPE
Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
Batôt,
G., Fleury, M. & Nabzar, L. 2016. Study of CO2 foam
performance in a CCS context. The 30th International Symposium of the
Society of Core Analysts-Snowmass.
Casteel,
J.F. & Djabbarah, N.F. 1988. Sweep improvement in CO2 flooding
by use of foaming agents. SPE Res. Eng. 3(4): 1186-1192.
Chen,
M., Yortsos, Y.C. & Rossen, W.R. 2004. A pore-network study of the
mechanisms of foam generation. SPE Annual Technical Conference and
Exhibition. Society of Petroleum Engineers.
Denkov,
J.N.D., Marinova, K.G. & Tcholakova, S.S. 2014. Mechanistic understanding
of the modes of action of foam control agents. Adv. Colloid Interface Sci.
206: 57-67.
Derikvand,
Z. & Riazi, M. 2016. Experimental investigation of a novel foam formulation
to improve foam quality. Journal of Molecular Liquids 224(Part B):
1311-1318.
Etminan,
S.R., Goldman, J. & Wassmuth, F. 2016. Determination of optimal conditions
for addition of foam to steam for conformance control. In SPE EOR Conference
at Oil and Gas West Asia. Society of Petroleum Engineers.
Farzaneh,
S.A. & Sohrabi, M. 2013. A review of the status of foam application in
enhanced oil recovery. EAGE Annual Conference & Exhibition incorporating
SPE Europec. Society of Petroleum Engineers.
Fathi, Z. &
Ramirez, W.F. 1984. Optimal injection policies for enhanced oil recovery: Part
2 - surfactant flooding. SPE paper 12814. SPE Journal 24(3): 331-341.
Ferno, M.A.,
Gauteplass, J., Pancharoen, M., Haugen, Å., Graue, A., Kovscek, A.R. &
Hirasaki, G. 2016. Experimental study of foam generation, sweep efficiency, and
flow in a fracture network. SPE Journal 21(4). DOI. https://doi.
org/10.2118/170840-PA.
Gauteplass, J.,
Chaudhary, K., Kovscek, A.R. & Fernø, M.A. 2015. Pore-level foam generation
and flow for mobility control in fractured systems. Colloids and Surfaces A:
Physicochemical and Engineering Aspects 468: 184-192.
Géraud, B., Méheust,
Y., Cantat, I. & Dollet, B. 2017. Lamella division in a foam flowing
through a two-dimensional porous medium: A model fragmentation process. Physical
Review Letters 118(9): 098003.
Géraud, B., Jones,
S.A., Cantat, I., Dollet, B. & Méheust, Y. 2016. The flow of a foam in a
two‐dimensional porous medium. Water
Resources Research 52(2): 773-790.
Getrouw, N.A.S. 2016.
The static and dynamic behaviour of foam in a model porous media. Master of
Science. Applied Earth Sciences at the Delft University of Technology.
pp.16-106 (Unpublished).
Guo, F. & Aryana,
S. 2016. An experimental investigation of nanoparticle-stabilized CO2 foam used
in enhanced oil recovery. Fuel 186: 430-442.
Hamza, M.F.,
Sinnathambi, C.M. & Merican, Z.A. 2016. Recent advancement of hybrid
materials used in chemical enhanced oil recovery. 29th Symposium of
Malaysian Chemical Engineering Conference, Miri, Sarawak, Malaysia.
Hesemann, P., Nguyen,
T.P. & Hankari, S.E. 2014. Precursor mediated synthesis of nanostructured
silicas: From precursor-surfactant ion pairs to structured materials. Materials 7(4): 2978-3001.
Hou, J., Zhang, Y.H.,
Lu, N., Yao, C.J. & Lei, G.L. 2016. A new method for evaluating the
injection effect of chemical flooding. Petroleum Science 13: 496-506.
Hou, Q., Zhu, Y., Luo,
Y. & Weng, R. 2012. Studies on foam flooding EOR technique for daqing
reservoirs after polymer flooding. In SPE Improved Oil Recovery Symposium. Society
of Petroleum Engineers.
Jones, S.A., van der
Bent, V., Farajzadeh, R., Rossen, W.R. & Vincent-Bonnieu, S. 2016.
Surfactant screening for foam EOR: Correlation between bulk and core flood
experiments. Colloids and Surfaces A: Physicochemical and Engineering
Aspects 500: 166-176.
Kalyanaraman, N.,
Arnold, C., Gupta, A., Tsau, J.S. & Ghahfarokhi, R.B. 2017. Stability
improvement of CO2 foam for enhanced oil‐recovery applications
using polyelectrolytes and polyelectrolyte complex nanoparticles. Journal of
Applied Polymer Science 134(6). DOI: 10.1002/app.44491.
Kapetas, L., Bonnieu,
S.V., Danelis, S., Rossen, W.R., Farajzadeh, R., Eftekhari, A.A. & Bahrim,
R.K. 2016. Effect of temperature on foam flow in porous media. Journal of
Industrial and Engineering Chemistry 36: 229-237.
Kovscek, A.R. &
Bertin, H.J. 2003. Foam mobility in heterogeneous porous media II: Experimental
observations. Transport in Porous Media 52(1): 37-49.
Lalehrokh, F., Bryant,
S.L., Huh, C. & Sharma, M.M. 2008. Application of pH-triggered polymers in
fractured reservoirs to increase sweep efficiency. SPE Symposium on Improved
Oil Recovery. Society of Petroleum Engineers. pp. 1-8.
Levitt, D., Jackson,
A., Heinson, C., Britton, L.N., Malik, T., Dwarakanath, V. & Pope, G.A. 2006.
Identification and evaluation of high-performance EOR surfactants. SPE/DOE
Symposium on Improved Oil Recovery. Society of Petroleum Engineers. pp.
1-11.
Li, Z.Q., Song, X.W.,
Wang, Q.W., Zhang, L., Guo, P. & Li, X.L. 2009. Enhanced foam flooding pilot
test in chengdong of shengli oilfield: Laboratory experiment and field
performance. International Petroleum Technology Conference. DOI:
https://doi.org/10.2523/IPTC-13575-MS.
Llave, F.M., Chung,
F.H., Louvier, R.W. & Hudgins, D.A. 1990. Foams as mobility control agents
for oil recovery by gas displacement. SPE/DOE Enhanced Oil Recovery
Symposium. Society of Petroleum Engineers. pp. 1-14.
Memon, M.K., Shuker,
M.T. & Elraies, K.A. 2016. Study of blended surfactants to generate stable
foam in presence of crude oil for gas mobility control. Journal of Petroleum
Exploration and Production Technology 7(1): 77-85.
Meybodi, H.E.,
Kharrat, R. & Wang, X. 2011. Study of microscopic and macroscopic
displacement behaviors of polymer solution in water-wet and oil-wet media. Transport
in Porous Media 89(1): 97-120.
Montoya, T., Argel,
B.L., Nassar, N.N., Franco, C.A. & Cortés, F.B. 2016. Kinetics and
mechanisms of the catalytic thermal cracking of asphaltenes adsorbed on
supported nanoparticles. Petroleum Science 13(3): 561-571.
Morin, B., Liu, Y.,
Alvarado, V. & Oakey, J. 2016. A microfluidic flow focusing platform to
screen the evolution of crude oil-brine interfacial elasticity. Lab on a
Chip 16(16): 3074-3081.
Murata, S., Ashida,
A., Okabe, H., Fukahori, D. & Ishida, T. 2010. Sweep efficiency improvement
by blocking already swept high permeable zones in reservoir with biodegradable
polymer gel. The IEA EOR 2010 31st Annual Workshop and Symposium,
Aberdeen, Scotland, October 18-20.
Nagy, R., Sallai, R.,
Bartha, L., & Vágó, Á. 2015. Selection method of surfactants for chemical
enhanced oil recovery. Advances in Chemical Engineering and Science 5:
121-128.
Nangacovié, H.L.M.
2012. Application of WAG and SWAG Injection Techniques in Norne E-Segment.
Department of Petroleum Engineering and Applied Geophysics, Norwegian
University of Science and Technology. p. 91.
Nezhad, E.H.,
Ghorbani, M., Zeinalkhani, M. & Heidari, A. 2013. DNA encapsulation in an
anionic reverse micellar solution of dioctyl sodium sulfosuccinate. Physical
Chemistry 3(1): 7-10.
Nguyen, Q.P., Currie,
P.K. & Zitha, P.L.J. 2005. Effect of crossflowon foam-induced diversion in
layered formations. SPE J. 10(1): 54-65.
Osei-Bonsu, K.,
Shokri, N. & Grassia, P. 2016. Fundamental investigation of foam flow in a
liquid-filled Hele-Shaw cell. Journal of Colloid and Interface Science 462:
288-296.
Pu, W., Wei, P., Sun,
L. & Wang, S. 2017. Stability, CO2 sensitivity, oil tolerance and
displacement efficiency of polymer enhanced foam. RSC Advances 7(11):
6251-6258.
Ransohoff, T.C. &
Radke, C.J. 1988. Mechanisms of foam generation in glass-bead packs. Journal
of Reservoir Engineering of Society of Petroleum Engineers 3: 573-585.
http://dx.doi.org/10.2118/15441-pa.
Sakthipriya,
N., Doble, M. & Sangwai, J.S. 2015. Enhanced oil recovery techniques for
Indian reservoirs, In Petroleum Geosciences: Indian Contexts,
edited by Mukherjee, S. Springer Geology. Springer, Cham. pp. 237-269.
Salehi, M.M.,
Safarzadeh, M.A., Sahraei, E. & Nejad, S.A.T. 2014. Comparison of oil
removal in surfactant alternating gas with water alternating gas, water
flooding and gas flooding in secondary oil recovery process. Journal of
Petroleum Science and Engineering 120: 86-93.
Schramm, L.L. 2000. Surfactants:
Fundamentals and Applications in the Petroleum Industry. Cambrige:
Cambridge University Press.
Schramm, L.L. &
Novosad, J.J. 1990. Micro-visualization of foam interaction with a crude oil. Colloids
Surf. 46(1): 21-43.
Shabib-Asl, A., Ayoub,
M.A., Alta’ee, A.F., Saaid, I.B.M. & Valentim, P.P.J. 2014. Comprehensive
review of foam application during foam assisted water alternating gas (FAWAG)
method. Research Journal of Applied Sciences, Engineering and Technology 8(17):
1896-1904.
Shedid, S.A. 2015.
Experimental investigation of alkaline/ surfactant/polymer (ASP) flooding in
low permeability heterogeneous carbonate reservoirs. SPE North Africa
Technical Conference and Exhibition. Society of Petroleum Engineers. pp.
1-16.
Sheng, J. 2013. Enhanced
Oil Recovery Field Case Studies. Gulf Professional Publishing.
Simjoo, M., Rezaei,
T., Andrianov, A. & Zitha, P.L.J. 2013. Foam stability in the presence of
oil: Effect of surfactant concentration and oil type. Colloids and Surf. A:
Physicochem. and Eng. Asp. 438: 148-158.
Sun, L., Pu, W., Xin,
J., Wei, P., Wang, B., Li, Y. & Yuan, C. 2015. High temperature and oil
tolerance of surfactant foam/ polymer-surfactant foam. RSC Advances 5(30):
23410-23418.
Sun, Q., Li, Z., Wang,
J., Li, S., Jiang, L. & Zhang, C. 2015. Properties of multi-phase foam and
its flow behavior in porous media. RSC Advances 5(83): 67676-67689.
Talebian, S.H., Tan,
I.M., Sagir, M. & Muhammad, M. 2015. Static and dynamic foam/oil
interactions: Potential of CO2- philic surfactants as mobility control agents. Journal
of Petroleum Science and Engineering 135: 118-126.
Touray, S. 2013.
Effect of water alternating gas injection on ultimate oil recovery. Master of
Engineering. Dalhousie University. p. 25 (Unpublished).
Tunio, S.Q., Chandio,
T.A. & Memon, M.K. 2012. Comparative study of FAWAG and SWAG as an
effective EOR technique for a Malaysian field. Research Journal of Applied
Sciences, Engineering and Technology 4(6): 645-648.
Tunio, S.Q., Tunio,
A.H., Ghirano, N.A. & El-Adawy, Z.M. 2011. Comparison of different enhanced
oil recovery techniques for better oil productivity. International Journal
of Applied Science and Technology 1(5): 143-153.
Tyrode, E., Pizzino,
A. & Rojas, O.J. 2003. Foamability and foam stability at high pressures and
temperatures. I. Instrument validation. Review of Scientific Instruments 74(5):
2925-2932.
Tzimas, E.,
Georgakaki, A., Cortes, C.G. & Peteves, S.D. 2005. Enhanced oil recovery
using carbon dioxide in the European energy system. EUR - Scientific and
Technical Research Reports 21895(6).
Vasshus, S.S. 2016.
Experimental study of foam generation and flow in carbonate fracture systems.
Master Thesis. University of Bergen (Unpublished).
Verma, M.K. 2015.
Fundamentals of carbon dioxide-enhanced oil recovery (CO2-EOR). A supporting
document of the assessment methodology for hydrocarbon recovery using CO2-EOR
associated with carbon sequestration: U.S. Geological Survey Open-File Report
2015-1071,19. http:// dx.doi.org/10.3133/ofr20151071.
Wang, Y., Ge, J.,
Zhang, W., Zhang, G., Lin, Y. & Song, K. 2016. Surface property and
enhanced oil recovery study of foam aqueous dispersions comprised of
surfactants-organic acids-nanoparticles. RSC Advances 6(114):
113478-113486.
Worthen, A.J., Parikh,
P.S., Chen, Y., Bryant, S.L., Huh, C. & Johnston, K.P. 2014. Carbon
dioxide-in-water foams stabilized with a mixture of nanoparticles and
surfactant for CO2 storage and utilization applications. Energy Procedia 63:
7929-7938.
Xue, Z., Worthen, A.,
Qajar, A., Robert, I., Bryant, S.L., Huh, C. & Johnston, K.P. 2016.
Viscosity and stability of ultra-high internal phase CO2-in-water foams
stabilized with surfactants and nanoparticles with or without polyelectrolytes. Journal of Colloid and Interface Science 461: 383-395.
Zeng, Y., Muthuswamy,
A., Ma, K., Wang, L., Farajzadeh, R., Puerto, M., Vincent-Bonnieu, S., Akbar
Eftekhari, A., Wang, Y., Da, C., Joyce, J.C., Biswal, S.L. & Hirasaki, G.J.
2016. Insights on foam transport from a texture-implicit local-equilibrium
model with an improved parameter estimation algorithm. Industrial &
Engineering Chemistry Research 55(28): 7819-7829.
Zerhboub, M., Touboul,
E., Ben-Naceur, K. & Thomas, R.L. 1994. Matrix acidizing: A novel approach
to foam diversion. SPE Production & Facilities 9(2): 121-126.
Zhao, G., Dai, C.,
Zhang, Y., Chen, A., Yan, Z. & Zhao, M. 2015. Enhanced foam stability by
adding comb polymer gel for in-depth profile control in high temperature
reservoirs. Colloids and Surfaces A: Physicochemical and Engineering Aspects 482: 115-124.
Zhu, D., Zhang, J.,
Han, Y., Wang, H. & Feng, Y. 2013. Laboratory study on the potential EOR
use of HPAM/VES hybrid in high-temperature and high-salinity oil reservoirs. Journal
of Chemistry 2013: Article ID. 927519.
*Corresponding author;
email: chandram1457@gmail.com