Sains Malaysiana 46(9)(2017): 1659–1665
http://dx.doi.org/10.17576/jsm-2017-4609-39
As-spun Bio-novolac Fibre Morphological Study based on
Resin’s Physico-chemical Properties
(Kajian Morfologi Gentian Bio-novolak Licin dan Nipis
berdasarkan Sifat Fiziko-kimia Resin)
SITI NOORUL AINA AB RAHIM1, SARANI ZAKARIA1*, SHARIFAH NABIHAH SYED JAAFAR1, CHIN HUA CHIA1, RASIDI ROSLAN2, HATIKA KACO1 & SINYEE GAN1
1Bioresources and
Biorefinery Laboratory, Faculty of Science and Technology
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Faculty of Industrial
Science & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak
26300 Gambang,
Kuantan, Pahang Darul Makmur, Malaysia
Received: 19 December
2016/Accepted: 17 March 2017
ABSTRACT
Bio-novolac fibre
made from phenol-formaldehyde derived oil palm empty fruit bunch (EFB)
was produced using electrospinning method. The bio-novolac phenol-formaldehyde
was prepared via liquefaction and resinification at two different molar ratios
of formaldehyde to liquefied EFB (LEFB)
(F:LEFB = 0.5:1 and 0.8:1). Electrospinning was applied to
the bio-novolac phenol-formaldehyde (BPF) in order to form smooth
and thin as-spun fibre. The BPF was electrospun at 15 kV
and 15 cm distance between needle and collector at a flow rate of 0.5 mL/h. At
lower molecular weight of BPF resin, beads formation was
observed. The addition of poly(vinyl) butyral (Mw = 175,000 - 250,000) has
improved the fibre formation with lesser beads hence produced more fibre.
Polymer solution with higher molecular weight produced better quality fibre.
Keywords:
Electrospinning; molecular weight; oil palm empty fruit bunch; phenolic resin;
poly(vinyl) butyral
ABSTRAK
Gentian bio-novolak
yang dihasilkan menggunakan fenol-formaldehid terbitan tandan kosong kelapa
sawit (TKKS) telah dihasilkan menggunakan kaedah elektroputaran.
Bio-novolak fenol-formaldehid telah disediakan melalui pencecairan dan
resinifikasi pada dua nisbah molar berbeza iaitu formaldehid kepada TKKS Tercecair (TKKST) (F:TKKST =
0.5:1 dan 0.8:1). Kaedah elektroputaran telah digunakan pada resin bio-novolak
fenol-formaldehid (BFF) bagi membentuk gentian licin dan
nipis. BFF telah dielektroputaran pada voltan 15 kV dengan jarak
15 cm antara jarum dan pemungut pada kadar aliran 0.5 mL/jam. Pada berat
molekul resin BFF lebih rendah, pembentukan manik dapat diperhatikan.
Penambahan poli (vinil) butiral (Mw = 175,000 - 250,000) telah menambah baik
pembentukan gentian dengan kehadiran manik yang berkurang. Larutan polimer
dengan berat molekul yang lebih tinggi telah menghasilkan gentian yang lebih
berkualiti.
Keywords: Berat
molekul; elektroputaran; poli(vinil) butiral; resin fenolik; tandan kosong
kelapa sawit
REFERENCES
Ahmadzadeh,
A., Zakaria, S. & Mohammad, D. 2008. Preparation of Novolak type resin by
liquefaction of palm oil empty fruit bunch (EFB) using sulphuric acid as a
catalyst. Iranian Polymer Journal 17(6): 441-449.
Ahn,
Y., Lee, S.H., Kim, H.J., Yang, Y.H., Hong, J.H., Kim, Y.H. & Kim, H. 2012.
Electrospinning of lignocellulosic biomass using ionic liquid. Carbohydrate
Polymers 88: 395-398.
Ahn,
Y.C., Park, S.K., Kim, G.T., Hwang, Y.J., Lee, C.G. & Shin, H.S. 2006.
Development of high efficiency nanofilters made of nanofibers. Current
Applied Physics 6: 1030-1035.
Alma,
M.H., Yoshioka, M., Yao, Y. & Shiraishi, N. 1995. Preparation and
characterization of the phenolated wood using hydrochloric acid (HCl) as a
catalyst. Wood Science and Technology 30(1): 39-47.
Amran,
U.A., Zakaria, S. & Chin, C.H. 2013. Epoxidized natural rubber toughened
aqueous resole type liquefied EFB resin: Physical and chemical
characterization. AIP Publishing 1: 158-162.
Amran, U.A., Zakaria,
S., Chin, C.H., Jaafar, S.N.S. & Rasidi, R. 2015. Mechanical properties and
water absorption of glass fibre reinforced bio-phenolic elastomer (BPE)
composite. Industrial Crops and Products 72: 54-59.
Bari,
M.N., Alam, M.Z., Muyibi, S.A., Jamal, P. & Mamun, A.A. 2010. Effect of
particle size on production of citric acid from oil palm empty fruit bunches as
new substrate by wild Aspergillus niger. Journal of Applied Polymer
Science 10(21): 2648-2652.
Bhardwaj,
N. & Kundu, S.C. 2010. Electrospinning: A fascinating fiber fabrication
technique. Biotechnology Advances 28: 325-347.
Brydson,
J.A. 1975. Plastics Materials. 6th ed. Oxford: Butterworth-Heinmann Ltd.
p. 172.
Chin,
S.X., Chin, C.H., Zakaria, S., Fang, F. & Ahmad, S. 2015. Ball milling
pretreatment and diluted acid hydrolysis of oil palm empty fruit bunch (EFB)
fibres for the production of levulinic acid. Journal of the Taiwan Institute
of Chemical Engineers 52: 85-92.
Demirbas,
M.F. & Balat, M. 2006. Recent advances on the production and utilization
trends of bio-fuels: A global perspective. Energy Conversion Management 47:
2371-2381.
Doh,
G.H., Lee, S.Y., Kang, I.A. & Kong, Y.T. 2005. Thermal behavior of
liquefied wood polymer composites (LWPC). Composite Structures 68(1):
103-108.
Gan,
S.Y., Zakaria, S., Ng, P., Chin, C.H. & Chen, R.S. 2015. Effect of acid
hydrolysis and thermal hydrolysis on solubility and properties of oil palm
empty fruit bunch fiber cellulose hydrogel. BioResources 11(1): 126-139.
Global
Palm Oil Production. 2016. Global palm oil production by country.
http://www.globalpalmoilproduction.com/. Accessed on 23 October 2016.
Gomes,
D.S., da Silva, A.N.R., Morimoto, N.I., Mendes, L.T.F., Furlan, R. & Ramos,
I. 2007. Characterization of an electrospinning process using different PAN/DMF
concentrations. Polímeros: Ciência e Tecnologia 17(3): 206-211.
He,
J., Wan, Y.Q. & Yu, J.Y. 2005. Scaling law in electrospinning: Relationship
between electric current and solution flow rate. Polymer 46: 2799-2801.
Hui,
P. 2011. Synthesis of polymers from organic solvent liquefied biomass: A
review. Renewable and Sustainable Energy Reviews 15: 3454-3463.
Hunley,
M.T. & Long, T.E. 2008. Electrospinning functional nanoscale fibers: A
perspective for the future. Polymer International 57: 385-389.
Imaizumi,
S., Matsumoto, H., Suzuki, K., Minagawa, M., Kimura, M. & Tanioka, A. 2009.
Phenolic resin-based carbon thin fibers prepared by electrospinning: Additive
effects of poly(vinyl butyral) and electrolytes. Polymer Journal 41(12):
1124-1128.
Jianying,
H., Miaoqing, X., Qiang, G., Minghua, L., Qiang, L., Yihong, C., Jiayan, C.,
Lizong, D. & Yousi, Z. 2005. Controlled synthesis of
high-ortho-substitution phenol-formaldehyde resins. Journal of Applied
Polymer Science 97: 652-658.
Juhaida,
M.F., Paridah, M.T., Mohd. Hilmi, M., Sarani, Z., Jalaluddin, H. & Mohamad Zaki,
A.R. 2010. Liquefaction of kenaf (Hibiscus cannabinus L.) core for wood
laminating adhesive. Bioresource Technology 101(4): 1355-1360.
Kavitha,
B., Jothimani, P. & Rajannan, G. 2013. Empty fruit bunch - A potential
organic manure for agriculture. International Journal of Science,
Environment and Technology 2(5): 930-937.
Koski,
A., Yim, K. & Shivkumar, S. 2004. Effect of molecular weight on fibrous PVA
produced by electrospinning. Materials Letters 58: 493-497.
Lannutti,
J., Reneker, D., Ma, T., Tomasko, D. & Farson, D. 2007. Electrospinning for
tissue engineering scaffolds. Material Science Engineering 27: 504-509.
Liang,
D., Hsiao, B.S. & Chu, B. 2007. Functional electrospun nanofibrous
scaffolds for biomedical applications. Advanced Drug Delivery 59:
1392-1412.
Maldas,
D., Shiraishi, N. & Harada, Y. 1997. Phenolic resol resin adhesives
prepared from alkali-catalyzed liquefied phenolated wood and used to bond
hardwood. Journal Adhesives Science Technology 11: 305-316.
Moubarik,
A., Pizzi, A., Allal, A., Charrier, F. & Charrier, B. 2009. Cornstarch and
tannin in phenol-formaldehyde resins for plywood production. Industrial
Crops and Products 30(2): 188-193.
Noreen,
F.M.Z. & Zakaria, S. 2011. Hydroxypropylation of empty fruit bunches fibre
using polyethylene glycol (PEG). Sains Malaysiana 42(3): 307-318.
Plastics
Today. 2014. Automotive market drives global phenolic resin demand.
http://www.plasticstoday.com/
content/automotive-market-drives-global-phenolic-resin-demand/74034086420977.
Accessed 25 October 2016.
Ramakrishna,
S., Fujihara, K., Teo, W.W., Lim, T.C. & Ma, Z. 2005. An Introduction to
Electrospinning and Nanofibres. Singapore: World Scientific.
Raquez,
J.M., Deléglise, M., Lacrampe, M.F. & Krawczak, P. 2010. Thermosetting
(bio) materials derived from renewable resources: A critical review. Progress
in Polymer Science 35: 487-509.
Reneker,
D.H. & Yarin, A.L. 2008. Electrospinning jets and polymer nanofibers. Polymer 49: 2387-2425.
Robert,
A.H. & Terry, S.J. 1994. Characterizations of phenol-formaldehyde resol
resins. Industrial & Engineering Chemistry Research 33: 693-697.
Roslan,
R., Zakaria, S., Chin, H.C., Boehm, R. & Laborie, M.P. 2014.
Physico-mechanical properties of resol phenolic adhesives derived from
liquefaction of oil palm empty fruit bunch fibres. Industrial Crops and
Products 62: 119-124.
Said,
F.M. 2010. Liquefaction of cotton stalks (Gossypium hirsutum L.) with
phenol. Wood Research 55(2): 71-80.
Sajab,
M.S., Chin, C.H., Zakaria, S. & Sillanpää, M. 2015. Fixed-bed column
studies for the removal of cationic and anionic dyes by chemically modified oil
palm empty fruit bunch fibers: Single-and multi-solute systems. Desalination
and Water Treatment 55(5): 1372-1379.
Suzuki,
K., Matsumoto, H., Minagawa, M., Kimura, M. & Tanioka, A. 2007. Preparation
of carbon fiber fabrics from phenolic resin by electrospray deposition. Polymer
Journal 39(11): 1128-1134.
Thompson,
C.J., Chase, G.G., Yarin, A.L. & Reneker, D.H. 2007. Effects of parameters
on nanofiber diameter determined from electrospinning model. Polymer 48:
6913-6922.
Tian,
Z., Zhang, W. & Lu, W. 2016. Preparation of nanofibres from phenol
liquefied wood by electrospinning. Nanomaterials and Nanotechnology. https://doi.org/10.5772/62287.
Yoshida,
C. & Okabe, K. 2005. Preparation of carbon fibers from biomass-based
phenol-formaldehyde resin. Journal of Materials Science 40: 335-339.
Zakaria,
S., Ahmadzadeh, A. & Roslan, R. 2013. Flow properties of Novolak-type resin
made from liquefaction of oil palm empty fruit bunch (EFB) fibres using
sulfuric acid as a catalyst. BioResources 8(4): 5884-5894.
Zakaria, S., Roslan,
R., Amran, U.A., Chin, C.H. & Bakaruddin, S.B. 2014. Characterization of
residue from EFB and kenaf core fibres in the liquefaction process. Sains
Malaysiana 43(3): 429-435.
Zussman, E., Theron,
A. & Yarin, A.L. 2003. Formation of nanofiber crossbars in electrospinning. Applied Physics Letters 82: 973-975.
*Corresponding
author; email: szakaria@ukm.edu.my