Sains Malaysiana 47(12)(2018): 2985–2992
http://dx.doi.org/10.17576/jsm-2018-4712-07
Reconstruction of Curcuma aeruginosa Secondary
Metabolite Biosynthetic Pathway using Omics Data
(Pembinaan Semula Tapak Jalan Biosintetik
Metabolit Sekunder Curcuma aeruginosa Menggunakan Data Omiks)
NURUL-SYAFIKA MOHAMAD-FAUZI1, RABIATUL-ADAWIAH ZAINAL-ABIDIN2, MOHD WAZNUL ADLY ZAIDAN3, SANIMAH SIMOH3, ALIZAH ZAINAL3 & ZETI-AZURA MOHAMED-HUSSEIN1,2*
1Centre for Frontier
Sciences, Faculty of Science and Technology, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Centre for
Bioinformatics Research, Institute of Systems Biology (INBIOSIS),
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan,
Malaysia
3Institut Penyelidikan
dan Kemajuan Pertanian Malaysia (MARDI), 43300 Serdang, Selangor
Selangor Darul Ehsan, Malaysia
Received: 30 May 2018/Accepted:
19 September 2018
ABSTRACT
Curcuma aeruginosa or temu hitam
is herbaceous plant with high therapeutic values in its rhizome
that is widely used in traditional medicine. However, molecular
studies on the secondary metabolite biosynthetic pathway of C.
aeruginosa is still limited. Hence, the aim of this study was
to explore and reconstruct the secondary metabolite biosynthetic
pathway of C. aeruginosa rhizome by integrating the metabolite
profiling and transcriptomic data. A total of 81 metabolites were
identified in the rhizome of C. aeruginosa; amongst others
are curzerene and β-Cubebene which are potent antioxidants.
A total of 28,225 unigene were obtained from the transcriptomic
sequencing of C. aeruginosa rhizome and analysed to identify
potential genes associated with the biosynthesis of its metabolites.
Of these, 43 unigenes were identified and mapped onto five sub-pathways;
i.e. carotenoid biosynthetic pathway, diterpenoid biosynthetic pathway,
monoterpenoid biosynthetic pathway, terpenoid and steroid biosynthetic
pathway, and sesquiterpenoid and triterpenoid biosynthetic pathway.
This study demonstrated a systematic bioinformatic approach to reconstruct
a metabolic pathway in the rhizome of C. aeruginosa using
bioinformatic approach.
Keywords: Data integration;
metabolic pathway; metabolomics; pathway reconstruction; transcriptomic
ABSTRAK
Curcuma aeruginosa atau temu hitam
merupakan sejenis tumbuhan herba yang mempunyai nilai terapeutik
tinggi pada bahagian rizomnya dan telah digunakan secara meluas
dalam perubatan tradisi. Namun begitu, masih banyak yang belum diketahui
tentang penghasilan metabolit sekunder di dalam C. aeruginosa.
Kajian ini dijalankan untuk membina semula tapak jalan biosintesis
C. aeruginosa dengan menggunakan data pemprofilan metabolit
sekunder dan transkriptomik. Sebanyak 81 metabolit telah dikenal
pasti di dalam rizom seperti curzerene dan β-Cubebene
yang berfungsi sebagai anti-oksidan. Sejumlah 28,225 unigen yang
terhasil daripada penjujukan transkriptomik rizom C. aeruginosa
telah dianalisis untuk mencari dan mengenal pasti sebarang gen
yang terlibat di dalam penghasilan metabolit di dalam rizom C.
aeruginosa. Terdapat 43 unigen telah dikenal pasti terlibat di
dalam lima tapak jalan biosintetik utama iaitu biosintesis karotenoid,
biosintesis diterpenoid, biosintesis monoterpenoid, biosintesis
terpenoid dan steroid serta biosintesis sesquiterpenoid dan triterpenoid.
Kajian ini juga memfokuskan kepada strategi pembinaan semula tapak
jalan biosintetik yang terlibat dalam rizom C. aeruginosa dengan
menggunakan pendekatan bioinformatik.
Kata
kunci: Integrasi data; metabolomik; pembinaan semula tapak jalan; tapak jalan
metabolik; transkriptomik
REFERENCES
Abe, I.,
Rohmer, M. & Prestwich, G.D. 1993. Enzymatic cyclization of squalene and
oxidosqualene to sterols and triterpenes. Chemical Reviews 93(6):
2189-2206.
Bateman, A.,
Martin, M.J., O’Donovan, C., Magrane, M., Apweiler, R., Alpi, E., Antunes, R.,
Arganiska, J., Bely, B., Bingley, M., Bonilla, C., Britto, R., Bursteinas, B.,
Chavali, G., Cibrian-Uhalte, E., Da Silva, A., De Giorgi, M., Dogan, T.,
Fazzini, F., Gane, P., Castro, L.G., Garmiri, P., Hatton- Ellis, E., Hieta, R.,
Huntley, R., Legge, D., Liu, W., Luo, J., Macdougall, A., Mutowo, P.,
Nightingale, A., Orchard, S., Pichler, K., Poggioli, D., Pundir, S., Pureza,
L., Qi, G., Rosanoff, S., Saidi, R., Sawford, T., Shypitsyna, A., Turner, E.,
Volynkin, V., Wardell, T., Watkins, X., Zellner, H., Cowley, A., Figueira, L.,
Li, W., McWilliam, H., Lopez, R., Xenarios, I., Bougueleret, L., Bridge, A.,
Poux, S., Redaschi, N., Aimo, L., Argoud-Puy, G., Auchincloss, A., Axelsen, K.,
Bansal, P., Baratin, D., Blatter, M.C., Boeckmann, B., Bolleman, J., Boutet,
E., Breuza, L., Casal-Casas, C., De Castro, E., Coudert, E., Cuche, B., Doche,
M., Dornevil, D., Duvaud, S., Estreicher, A., Famiglietti, L., Feuermann, M.,
Gasteiger, E., Gehant, S., Gerritsen, V., Gos, A., Gruaz-Gumowski, N., Hinz,
U., Hulo, C., Jungo, F., Keller, G., Lara, V., Lemercier, P., Lieberherr, D.,
Lombardot, T., Martin, X., Masson, P., Morgat, A., Neto, T., Nouspikel, N.,
Paesano, S., Pedruzzi, I., Pilbout, S., Pozzato, M., Pruess, M., Rivoire, C.,
Roechert, B., Schneider, M., Sigrist, C., Sonesson, K., Staehli, S., Stutz, A.,
Sundaram, S., Tognolli, M., Verbregue, L., Veuthey, A.L., Wu, C.H., Arighi,
C.N., Arminski, L., Chen, C., Chen, Y., Garavelli, J.S., Huang, H., Laiho, K.,
McGarvey, P., Natale, D.A., Suzek, B.E., Vinayaka, C.R., Wang, Q., Wang, Y.,
Yeh, L.S., Yerramalla, M.S. & Zhang, J. 2015. UniProt: A hub for protein
information. Nucleic Acids Research 43: 204-212.
Berardini,
T.Z., Reiser, L., Li, D., Mezheritsky, Y., Muller, R., Strait, E. & Huala,
E. 2015. The arabidopsis information resource: Making and mining the “gold
standard” annotated reference plant genome. Genesis 53(8): 474-485.
Cameron,
S.I., Smith, R.F. & Kierstead, K.E. 2005. Linking medicinal/nutraceutical
products research with commercialization. Pharmaceutical Biology 43(5):
425-433.
Cavill, R.,
Jennen, D., Kleinjans, J. & Briedé, J.J. 2015. Transcriptomic and
metabolomic data integration. Briefings in Bioinformatics 17(5):
891-901.
Chatr-Aryamontri,
A., Oughtred, R., Boucher, L., Rust, J., Chang, C., Kolas, N.K., O’Donnell, L.,
Oster, S., Theesfeld, C., Sellam, A., Stark, C., Breitkreutz, B.J., Dolinski,
K. & Tyers, M. 2017. The BioGRID interaction database: 2017 update. Nucleic
Acids Research 45: 369-379.
Filippis,
L.F.D. 2016. Plant secondary metabolites: From molecular biology to health
products. In Plant-Environment Interaction: Responses and Approaches to
Mitigate Stress, edited by Azooz, M.M. & Ahmad, P. New Jersey: Wiley-
Blackwell. pp. 263-300.
Francke, C.,
Siezen, R.J. & Teusink, B. 2005. Reconstructing the metabolic network of a
bacterium from its genome. Trends in Microbiology 13(11): 550-558.
Hastings,
J., De Matos, P., Dekker, A., Ennis, M., Harsha, B., Kale, N., Muthukrishnan, V.,
Owen, G., Turner, S., Williams, M. & Steinbeck, C. 2013. The ChEBI
reference database and ontology for biologically relevant chemistry:
Enhancements for 2013. Nucleic Acids Research 41: 456-463.
Kamazeri,
T.S.A.T., Samah, O.A., Taher, M., Susanti, D. & Qaralleh, H. 2012.
Antimicrobial activity and essential oils of Curcuma aeruginosa, Curcuma
mangga and Zingiber cassumunar from Malaysia. Asian Pacific
Journal of Tropical Medicine 5(3): 202-209.
Kanehisa,
M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. 2016. KEGG as a
reference resource for gene and protein annotation. Nucleic Acids Research 44:
457-462.
de Las
Rivas, J. & Fontanillo, C. 2010. Protein-protein interactions essentials:
Key concepts to building and analyzing interactome networks. PLoS
Computational Biology 6(6): 1-8.
de Oliveira
Dal’Molin, C.G., Orellana, C., Gebbie, L., Steen, J., Hodson, M.P.,
Chrysanthopoulos, P., Plan, M.R., McQualter, R., Palfreyman, R.W. &
Nielsen, L.K. 2016. Metabolic reconstruction of Setaria italica: A systems
biology approach for integrating tissue-specific omics and pathway analysis of
bioenergy grasses. Frontiers in Plant Science 7: 1-18.
Kitano, H.
2002. Computational systems biology. Nature 420: 206-210.
Lee, M.H.,
Jeong, J.H., Seo, J.W., Shin, C.G., Kim, Y.S., In, J.G., Yang, D.C., Yi, J.S.
& Choi, Y.E. 2004. Enhanced triterpene and phytosterol biosynthesis in Panax
ginseng overexpressing squalene synthase gene. Plant and Cell Physiology 45(8): 976-984.
Li, S., Li,
Y. & Smolke, C.D. 2018. Strategies for microbial synthesis of high-value
phytochemicals. Nature Chemistry 10(4): 395-404.
Liu, Y.,
Roy, S.S., Nebie, R.H.C., Zhang, Y. & Nair, M.G. 2013. Functional food
quality of Curcuma caesia, Curcuma zedoaria and Curcuma
aeruginosa endemic to Northeastern India. Plant Foods for Human
Nutrition 68: 72-77.
Matsuba, Y.,
Zi, J., Jones, A.D., Peters, R.J. & Pichersky, E. 2015. Biosynthesis of the
diterpenoid lycosantalonol via nerylneryl diphosphate in Solanum
lycopersicum. PLoS ONE 10(3): 1-16.
Othman, R.,
Mohd Zaifuddin, F.A. & Hassan, N.M. 2014. Carotenoid biosynthesis
regulatory mechanisms in plants. Journal of Oleo Science 63(8): 753-760.
Rajkumari,
S. & Sanatombi, K. 2018. Nutritional value, phytochemical composition, and
biological activities of edible Curcuma species: A review. International
Journal of Food Properties 20(3): 2668-2687.
Saithong,
T., Rongsirikul, O., Kalapanulak, S., Chiewchankaset, P., Siriwat, W.,
Netrphan, S., Suksangpanomrung, M., Meechai, A. & Cheevadhanarak, S. 2013.
Starch biosynthesis in cassava: A genome-based pathway reconstruction and its
exploitation in data integration. BMC Systems Biology 7: 1-18.
Sanchez, S. & Demain,
A.L. 2008. Metabolic regulation and overproduction of primary metabolites. Microbial
Biotechnology 1(4): 283-319.
Sawai, S. & Saito, K. 2011. Triterpenoid biosynthesis and
engineering in plants. Frontiers in Plant Science 2: 1-8.
Schläpfer, P., Zhang,
P., Wang, C., Kim, T., Banf, M., Chae, L., Dreher, K., Chavali, A.K., Nilo-Poyanco,
R., Bernard, T., Kahn, D. & Rhee, S.Y. 2017. Genome-wide prediction of
metabolic enzymes, pathways, and gene clusters in plants. Plant Physiology 173(4):
2041-2059.
Seaver, S.M.D., Henry,
C.S. & Hanson, A.D. 2012. Frontiers in metabolic reconstruction and
modeling of plant genomes. Journal of Experimental Botany 63(6):
2247-2258.
Simoh, S. & Zainal,
A. 2015. Chemical profiling of Curcuma aeruginosa Roxb. rhizome using
different techniques of solvent extraction. Asian Pacific Journal of
Tropical Biomedicine 5(5): 412-417.
Singh, B. & Sharma,
R.A. 2015. Plant terpenes: Defense responses, phylogenetic analysis, regulation
and clinical applications. 3 Biotech 5: 129-151.
Szklarczyk, D., Morris,
J.H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A., Doncheva, N.T.,
Roth, A., Bork, P., Jensen, L.J. & Von Mering, C. 2017. The STRING database
in 2017: Quality-controlled protein-protein association networks, made broadly
accessible. Nucleic Acids Research 45: 362-368.
Vishwakarma, R.K.,
Patel, K., Sonawane, P., Kumari, U., Singh, S., Ruby, Abbassi, S., Agrawal,
D.C., Tsay, H.S. & Khan, B.M. 2015. Squalene synthase gene from medicinal
herb Bacopa monniera: Molecular characterization, differential
expression, comparative modeling and docking studies. Plant Molecular
Biology Reporter 33(6): 1675-1685.
Wurtele, E.S., Chappell,
J., Daniel Jones, A., Celiz, M.D., Ransom, N., Hur, M., Rizshsky, L., Crispin,
M., Dixon, P., Liu, J., Widrlechner, M.P. & Nikolau, B.J. 2012. Medicinal
plants: A public resource for metabolomics and hypothesis development. Metabolites 2(4): 1032-1059.
Zaidan, M.W.A., Zainal,
A., Jaganath, I.B. & Simoh, S. 2016. Transcriptomics and metabolomics data
integration for identification the metabolic pathways in Curcuma aeruginosa. Proceedings of the International Conference on Natural Products 2016.
Terengganu. p. 1.
*Corresponding author;
email: zeti.hussein@ukm.edu.my
|