Sains Malaysiana 47(12)(2018): 2993–3002
http://dx.doi.org/10.17576/jsm-2018-4712-08
Reconstruction of the Transcriptional
Regulatory Network in Arabidopsis thaliana Aliphatic Glucosinolate
Biosynthetic Pathway
(Pembinaan Semua Jaringan Pengawal Atur Transkripsi
Tapak Jalan Biosintesis Glukosinolat Alifatik dalam Arabidopsis thaliana)
KHALIDAH-SYAHIRAH ASHARI1, MUHAMMAD-REDHA ABDULLAH-ZAWAWI2, SARAHANI HARUN2 & ZETI-AZURA MOHAMED-HUSSEIN1,2*
1Centre for Frontier Sciences, Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Centre for Bioinformatics Research, Institute of Systems
Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
Received: 30 May 2018 /Accepted: 19 September
2018
ABSTRACT
Aliphatic glucosinolate is an
important secondary metabolite responsible in plant defense mechanism and
carcinogenic activity. It plays a crucial role in plant adaptation towards
changes in the environment such as salinity and drought. However, in many plant
genomes, there are thousands of genes encoding proteins still with putative
functions and incomplete annotations. Therefore, the genome of Arabidopsis
thaliana was selected to be investigated further to identify any putative
genes that are potentially involved in the aliphatic glucosinolate biosynthesis
pathway, most of its gene are with incomplete annotation. Known genes for
aliphatic glucosinolates were retrieved from KEGG and
AraCyc databases. Three co-expression databases i.e., ATTED-II,
GeneMANIA and STRING were used to perform the
co-expression network analysis. The integrated co-expression network was then
being clustered, annotated and visualized using Cytoscape plugin, MCODE and ClueGO. Then, the regulatory network of A. thaliana from
AtRegNet was mapped onto the co-expression network to build the transcriptional
regulatory network. This study showed that a total of 506 genes were
co-expressed with the 61 aliphatic glucosinolate biosynthesis genes. Five
transcription factors have been predicted to be involved in the biosynthetic
pathway of aliphatic glucosinolate, namely SEPALLATA 3
(SEP3), PHYTOCHROME
INTERACTING FACTOR 3-like 5 (AtbHLH15/PIL5), ELONGATED HYPOCOTYL 5 (HY5), AGAMOUS-like 15 (AGL15)
and GLABRA 3 (GL3). Meanwhile, three other
genes with high potential to be involved in the aliphatic glucosinolates
biosynthetic pathway were identified, i.e., methylthioalkylmalate-like synthase
4 (MAML-4) and aspartate aminotransferase (ASP1
and ASP4). These findings can be used to complete the
aliphatic glucosinolate biosynthetic pathway in A. thaliana and to
update the information on the glucosinolate-related pathways in public
metabolic databases.
Keywords: Aliphatic glucosinolate
biosynthesis; co-expression analysis; regulatory network
ABSTRAK
Glukosinolat alifatik merupakan metabolit
sekunder penting di dalam mekanisme pertahanan tumbuhan dan aktiviti
karsinogen. Glukosinolat juga penting di dalam penyesuaian terhadap
persekitaran seperti kemasinan dan kemarau. Namun begitu dalam kebanyakan
genom tumbuhan, masih banyak fungsi gen yang mengekod protein adalah
putatif dan tidak lengkap. Oleh itu, genom Arabidopsis thaliana telah dipilih
untuk dikaji dengan lebih mendalam untuk mengenal pasti gen putatif
yang berpotensi terlibat di dalam tapak jalan biosintesis glukosinolat
alifatik. Gen biosintetik glukosinolat alifatik telah dikumpul daripada
pangkalan data KEGG dan AraCyc manakala pangkalan data ATTED-II,
GeneMANIA dan STRING digunakan dalam analisis
pengekspresan bersama. Integrasi jaringan pengekspresan bersama
telah dilakukan dengan menggunakan perisian Cytoscape, MCODE dan ClueGO. Kesemua gen
pengekspresan bersama yang terlibat dipetakan menggunakan set data
jaringan pengawal atur daripada pangkalan data AtRegNet. Hasil kajian
ini berjaya mengenal pasti 506 gen yang telah diekspreskan bersama
dengan 61 gen biosintetik glukosinolat alifatik. Lima faktor transkripsi
telah berjaya dikenal pasti dan didapati terlibat di dalam mengawal
atur biosintetis glukosinolat alifatik iaitu SEPALLATA 3 (SEP3),
PHYTOCHROME
INTERACTING FACTOR 3-like 5 (AtbHLH15/PIL5), ELONGATED HYPOCOTYL
5 (HY5), AGAMOUS-like 15 (AGL15)
dan GLABRA 3 (GL3). Kajian ini mengukuhkan lagi penglibatan
gen berpotensi di dalam tapak jalan biosintesis glukosinolat alifatik
melalui penemuan gen methylthioalkylmalate-like synthase 4 (MAML-4)
dan aspartate aminotransferase (ASP4 dan ASP1)
menggunakan kaedah yang telah dijalankan.
Kata
kunci: Analisis pengekspresan bersama; biosintesis glukosinolat alifatik;
jaringan pengawal atur
REFERENCES
Atwell, L.L., Beaver, L.M., Shannon, J.,
Williams, D.E., Dashwood, R.H. & Ho, E. 2015. Epigenetic regulation
by sulforaphane: Opportunities for breast and prostate cancer chemoprevention.
Current Pharmacology Reports 1(2): 102-111.
Bader, G.D. & Hogue, C.W. 2003. An automated
method for finding molecular complexes in large protein interaction
networks. BMC Bioinformatics 4(1): 2.
Beekwilder, J., Van Leeuwen, W., Van Dam,
N.M., Bertossi, M., Grandi, V., Mizzi, L., Soloviev, M., Szabados,
L., Molthoff, J.W., Schipper, B. & Verbocht, H. 2008. The impact
of the absence of aliphatic glucosinolates on insect herbivory in
Arabidopsis. PLoS ONE 3(4): 1-12.
Bindea, G., Mlecnik, B., Hackl, H., Charoentong,
P., Tosolini, M., Kirilovsky, A., Fridman, W., Pagès, F.,
Trajanoski, Z., Galon, J., Team, A., Immunology, I.C. & Descartes,
U.P. 2009. ClueGO: A Cytoscape plug-in to decipher functionally
grouped gene ontology and pathway annotation networks. Bioinformatics
25(8): 1091-1093.
Binder, S. 2010. Branched-chain amino acid
metabolism in Arabidopsis thaliana. The Arabidopsis Book
e0137: 1-14.
Bradbury, L.M.T., Niehaus, T.D. & Hanson,
A.D. 2013. Comparative genomics approaches to understanding and
manipulating plant metabolism. Current Opinion in Biotechnology
24: 278-284.
Cao, F.Y., Yoshioka, K. & Desveaux, D.
2011. The roles of ABA in plant-pathogen interactions. Journal
of Plant Research 124(4): 489-499.
Cluis, C.P., Mouchel, C.F. & Hardtke,
C.S. 2004. The Arabidopsis transcription factor HY5 integrates
light and hormone signaling pathways. The Plant Journal 38(2):
332-347.
Farrow, S.C. & Facchini, P.J. 2014. Functional
diversity of 2-oxoglutarate/Fe(II)-dependent dioxygenases in plant
metabolism. Frontiers in Plant Science 5(October): 1-15.
Field, B., Furniss, C., Wilkinson, A. &
Mithen, R. 2006. Expression of a Brassica isopropylmalate synthase
gene in Arabidopsis perturbs both glucosinolate and amino
acid metabolism. Plant Molecular Biology 60(5): 717-727.
Frerigmann, H., Bottcher, C., Baatout, D.
& Gigolashvili, T. 2012. Glucosinolates are produced in trichomes
of Arabidopsis thaliana. Frontiers in Plant Science 3:
242.
Grubb, C.D. & Abel, S. 2006. Glucosinolate
metabolism and its control. Trends in Molecular Medicine 11(2):
89-100.
Halkier, B.A. & Gershenzon, J. 2006.
Biology and biochemistry of glucosinolates. Annual Review of
Plant Biology 57: 303- 333.
Hopkins, R.J., van Dam, N.M. & van Loon,
J.J.A. 2009. Role of glucosinolates in insect-plant relationships
and multitrophic interactions. Annual Review of Entomology 54:
57-83.
Hundertmark, M. & Hincha, D.K. 2008.
LEA (late embryogenesis abundant) proteins and their encoding genes
in Arabidopsis thaliana. BMC Genomics 9: 118.
Ishida, M., Hara, M., Fukino, N., Kakizaki,
T. & Morimitsu, Y. 2014. Glucosinolate metabolism, functionality
and breeding for the improvement of Brassicaceae vegetables. Breeding
Science 64: 48-59.
Kanehisa, M., Sato, Y., Kawashima, M., Furumichi,
M. & Tanabe, M. 2016. KEGG as a reference resource for gene
and protein annotation. Nucleic Acids Research 44: D457-D462.
Kaufmann, K., Muiño, J.M., Jauregui,
R., Airoldi, C.A., Smaczniak, C., Krajewski, P. & Angenent,
G.C. 2009. Target genes of the MADS transcription factor sepallata3:
Integration of developmental and hormonal pathways in the Arabidopsis
flower. PLoS Biology 7(4): 0854-0875.
Kim, D.H., Yamaguchi, S., Lim, S., Oh, E.,
Park, J., Hanada, A., Kamiya, Y. & Choi, G. 2008. SOMNUS, a
CCCH-Type zinc finger protein in Arabidopsis, negatively
regulates light-dependent seed germination downstream of PIL5. The
Plant Cell 20(5): 1260-1277.
Lächler, K., Imhof, J., Reichelt, M.,
Gershenzon, J. & Binder, S. 2015. The cytosolic branched-chain
aminotransferases of Arabidopsis thaliana influence methionine
supply, salvage and glucosinolate metabolism. Plant Molecular
Biology 88(1-2): 119-131.
Lee, J.G., Lim, S., Kim, J. & Lee, E.J.
2017. The mechanism of deterioration of the glucosinolate-myrosynase
system in radish roots during cold storage after harvest. Food
Chemistry 233: 60-68.
Li, Y., Pearl, S.A. & Jackson,
S.A. 2015. Gene networks in plant biology: Approaches in reconstruction
and analysis. Trends in Plant Science 20(10): 664-675.
Mao, L., Van Hemert, J.L., Dash, S. &
Dickerson, J.A. 2009. Arabidopsis gene co-expression network and its functional
modules. BMC Bioinformatics 10: 1-24.
Martínez-Ballesta, M., Moreno-Fernández,
D.A., Castejón, D., Ochando, C., Morandini, P.A. & Carvajal,
M. 2015. The impact of the absence of aliphatic glucosinolates on
water transport under salt stress in Arabidopsis thaliana.
Frontiers in Plant Science 6(July): 1-12.
Miesak, B.H. & Coruzzi, G.M. 2002. Molecular
and physiological analysis of Arabidopsis mutants defective in cytosolic or chloroplastic
aspartate aminotransferase. Plant Physiology 129(2): 650-660.
Moon, J., Zhu, L., Shen, H. & Huq, E.
2008. PIF1 directly and indirectly regulates chlorophyll biosynthesis
to optimize the greening process in Arabidopsis. Proceedings of the National Academy
of Sciences of the United States of America 105(27): 9433-9438.
Mostafa, I., Yoo, M.J., Zhu, N., Geng, S.,
Dufresne, C., Abou- Hashem, M., El-Domiaty, M. & Chen, S. 2017.
Membrane proteomics of Arabidopsis glucosinolate mutants cyp79b2/b3 and myb28/29.
Frontiers in Plant Science 8(April).
Mueller, L.A., Zhang, P. & Rhee, S.Y.
2003. AraCyc: A biochemical pathway database for Arabidopsis. Plant Physiology 132: 453-460.
Neal, C.S., Fredericks, D.P., Griffiths,
C.A. & Neale, A.D. 2010. The characterisation of AOP2: A gene
associated with the biosynthesis of aliphatic alkenyl glucosinolates
in Arabidopsis thaliana. BMC Plant Biology 10: 1-16.
Nour-Eldin, H.H. & Halkier, B.A. 2009.
Piecing together the transport pathway of aliphatic glucosinolates.
Phytochemistry Reviews 8(1): 53-67.
Nützmann, H.W., Huang, A. & Osbourn,
A. 2016. Plant metabolic gene clusters - from genetics to genomics.
New Phytologist 211(3): 771-789.
Obayashi, T., Kinoshita, K., Nakai, K.,
Shibaoka, M., Hayashi, S., Saeki, M., Shibata, D., Saito, K. &
Ohta, H. 2007. ATTED-II: A database of co-expressed genes and cis
elements for identifying co-regulated gene groups in Arabidopsis.
Nucleic Acids Research 35: D863-D869.
Oh, E., Kang, H., Yamaguchi, S., Park, J.,
Lee, D., Kamiya, Y. & Choi, G. 2009. Genome-wide analysis of
genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during
seed germination in Arabidopsis. The Plant Cell 21(2):
403-419.
Rameeh, V. 2015. Glucosinolates and their
important biological and anti cancer effects: A review. Jordan
Journal of Agricultural Sciences 11(1): 1-13.
Redovniković, I.R., Glivetic, T., Delonga,
K. & Jasna Vorkapic- Furac. 2008. Glucosinolates and their potential
role in plant. Periodicum Biologorum 110(4): 297-309.
Redovniković, I.R., Textor, S., Lisni,
B. & Gershenzon, J. 2012. Expression pattern of the glucosinolate
side chain biosynthetic genes MAM1 and MAM3 of Arabidopsis thaliana
in different organs and developmental stages. Plant Physiology
and Biochemistry 53: 77-83.
Rohr, F., Ulrichs, C. & Mewis, I. 2009.
Variability of aliphatic glucosinolates in Arabidopsis thaliana
(L.) - Impact on glucosinolate profile and insect resistance.
Journal of Applied Botany and Food Quality 82(2): 131-135.
Roy, S., Bhattacharyya, D.K. & Kalita,
J.K. 2016. Analysis of gene expression patterns using biclustering.
Methods in Molecular Biology (Clifton, N.J.) 1375: 91-103.
Schuster, J., Knill, T., Reichelt, M., Gershenzon,
J. & Binder, S. 2006. BRANCHED-CHAIN AMINOTRANSFERASE4 is part
of the chain elongation pathway in the biosynthesis of methionine-derived
glucosinolates in Arabidopsis. The Plant Cell 18:
2664-2679.
Seo, M. & Koshiba, T. 2002. Complex
regulation of ABA biosynthesis in plants. Trends in Plant Science
7(1): 41-48.
Serin, E.A.R., Nijveen, H., Hilhorst, H.W.M.
& Ligterink, W. 2016. Learning from co-expression networks:
Possibilities and challenges. Frontiers in Plant Science 7(444):
1-18.
Shannon, P., Markiel, A., Ozier, O., Baliga,
N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B. & Ideker,
T. 2003. Cytoscape: A software environment for integrated models
of biomolecular interaction networks. Genome Research 13(11):
2498-2504.
Smita, S., Katiyar, A., Chinnusamy, V.,
Pandey, D.M. & Bansal, K.C. 2015. Transcriptional regulatory
network analysis of myb transcription factor family genes in rice.
Frontiers in Plant Science 6(December): 1-19.
Sønderby, I.E., Geu-flores, F. &
Halkier, B.A. 2010. Biosynthesis of glucosinolates - gene discovery
and beyond. Trends in Plant Science 15(5): 283-290.
Suryamohan, K. & Halfon, M. 2015. Identifying
transcriptional cis-regulatory modules in animal genomes. Wiley
Interdisciplinary Reviews. Developmental Biology 4(2): 59-84.
Szklarczyk, D., Morris, J.H., Cook, H.,
Kuhn, M., Wyder, S., Simonovic, M., Santos, A., Doncheva, N.T.,
Roth, A., Bork, P., Jensen, L.J. & von Mering, C. 2017. The
STRING database in 2017: Quality-controlled protein-protein association
networks, made broadly accessible. Nucleic Acids Research 45:
D362-D368.
Textor, S., de Kraker, J.W., Hause, B.,
Gershenzon, J. & Tokuhisa, J.G. 2007. MAM3 catalyzes the formation
of all aliphatic glucosinolate chain lengths in Arabidopsis.
Plant Physiology 144(1): 60-71.
Toledo-Ortiz, G., Johansson, H., Lee, K.P.,
Bou-Torrent, J., Stewart, K., Steel, G., Rodríguez-Concepción,
M. & Halliday, K.J. 2014. The HY5-PIF regulatory module coordinates
light and temperature control of photosynthetic gene transcription.
PLoS Genetics 10(6): e1004416.
van Dam, S., Võsa, U., van der Graaf,
A., Franke, L. & de Magalhães, J.P. 2017. Gene co-expression
analysis for functional classification and gene-disease predictions.
Briefings in Bioinformatics (January): 1-18.
Wada, T., Kunihiro, A. & Tominaga-Wada,
R. 2014. Arabidopsis CAPRICE (MYB) and GLABRA3 (bHLH) control tomato
(Solanum lycopersicum) anthocyanin biosynthesis. PLoS
ONE 9(9): e109093.
Warde-Farley, D., Donaldson, S.L., Comes,
O., Zuberi, K., Badrawi, R., Chao, P., Franz, M., Grouios, C., Kazi,
F., Lopes, C.T., Maitland, A., Mostafavi, S., Montojo, J., Shao,
Q., Wright, G., Bader, G.D. & Morris, Q. 2010. The GeneMANIA
prediction server: Biological network integration for gene prioritization
and predicting gene function. Nucleic Acids Research 38:
W214-W220.
Yilmaz, A., Mejia-Guerra, M.K., Kurz, K.,
Liang, X., Welch, L. & Grotewold, E. 2011. AGRIS: The Arabidopsis
gene regulatory information server, an update. Nucleic Acids
Research 39(SUPPL. 1): 1118-1122.
Yoshida, Y., Sano, R., Wada, T., Takabayashi,
J. & Okada, K. 2009. Jasmonic acid control of GLABRA3 links
inducible defense and trichome patterning in Arabidopsis.
Development 136(6): 1039-1048.
Zhang, Y., Liu, Z., Liu, R., Hao, H. &
Bi, Y. 2011. Gibberellins negatively regulate low temperature-induced
anthocyanin accumulation in a HY5/HYH-dependent manner. Plant
Signaling and Behavior 6(5): 632-634.
Zheng, Q., Zheng, Y. & Perry, S.E. 2013.
AGAMOUS-Like15 promotes somatic embryogenesis in Arabidopsis
and soybean in part by the control of ethylene biosynthesis
and response. Plant Physiology 161(4): 2113-2127.
*Corresponding author; email: zeti.hussein@ukm.edu.my
|