Sains Malaysiana 47(12)(2018): 3031–3041
http://dx.doi.org/10.17576/jsm-2018-4712-13
Comparative Analysis of Metabolites and
Antioxidant Potentials from Different Plant Parts of Curcuma
aeruginosa Roxb.
(Analisis Bandingan Kandungan Metabolit dan Potensi
Antioksidan daripada Bahagian Berbeza Curcuma aeruginosa
Roxb.)
SANIMAH SIMOH*, SEW YUN SHIN, FAZRI ABD RAHIM, MUHAMMAD AIZUDDIN AHMAD
& ALIZAH ZAINAL
Biotechnology
and Nanotechnology Research Centre, Malaysian Agricultural Research and
Development Institute (MARDI), Persiaran MARDI-UPM, 43400 Serdang, Selangor
Darul Ehsan
Malaysia
Received: 30 May 2018 /Accepted:
13 September 2018
ABSTRACT
A comparative analysis of
metabolites from different parts of Curcuma aeruginosa, i.e. leaves,
stems, adventitious roots and rhizomes was performed by GC-MS/MS coupled
with multivariate statistical analysis. The GC-MS/MS analysis
confirmed the occurrence of 26 metabolites belonged to terpenoids in almost all
the samples. The Principal Component Analysis (PCA)
indicated that there was a clear distinction between rhizomes and other plant
parts, i.e. stems, leaves, and adventitious roots that could be explained by
relatively higher contents of terpenoids including curzerene,
alpha-farnesen, furanocoumarin, velleral, germacrone cineole, borneol, beta- and gamma- elemene and methenolone. The results of Hierarchical
Clustering Analyses (HCA) corresponded with the PCA results
where many terpenoids found abundantly high in rhizome were clustered together.
This was supported by the Pearson correlation analysis that showed a
significantly good relationship between those terpenoids. The adventitious
roots demonstrated the strongest antioxidant activity as compared to the other
plant parts which could be attributed to its highest Total Phenolic Contents (TPC).
Total phenolic contents of all the plant parts were positively correlated with
their antioxidant activities which indicate that phenolic compounds may play a
role in the overall antioxidant activities of the plants. The results of the
study highlighted the potential of this underexploited Curcuma species
which could serve as a new source of important phytochemicals and natural
antioxidant that could be incorporated in functional foods and nutraceuticals.
In addition, chemical and biological evidence shown in the present work has
rationalised the different uses of various plant parts of C. aeruginosa.
Keywords: Antioxidant; Curcuma
aeruginosa; GC-MS/MS; metabolomics
ABSTRAK
Suatu analisis perbandingan metabolit
daripada bahagian berlainan Curcuma aeruginosa, iaitu daun,
batang, akar adventisius dan rizom dijalankan dengan menggunakan
GC-MS/MS
berserta dengan analisis statistik multivariasi. Analisis GC-MS/MS mengesahkan kehadiran 26 metabolit
dalam hampir kesemua sampel dengan kebanyakan metabolit tergolong
dalam kumpulan terpenoid. Analisis Komponen Utama (PCA)
menunjukkan terdapat perbezaan ketara metabolit antara rizom dan
bahagian tumbuhan lain seperti batang, daun dan akar adventisius
yang dapat dijelaskan dengan kandungan yang tinggi terpenoidnya,
termasuk curzerene, alfa-farnesen, furanocoumarin, velleral,
germacrone cineole, borneol, beta- dan gama-elemene dan
methenolone. Keputusan analisis pengklusteran
hierarki (HCA) adalah selari dengan keputusan
PCA dengan sebahagian besar terpenoid yang didapati di dalam
rizom dikluster bersama. Ini disokong
oleh analisis korelasi Pearson yang menunjukkan perkaitan yang signifikan
antara terpenoid berkenaan. Akar adventisius menunjukkan
aktiviti antioksidan tertinggi berbanding dengan bahagian tumbuhan
yang lain yang disebabkan oleh kandungan
keseluruhan fenoliknya yang paling tinggi. Jumlah kandungan keseluruhan
fenolik (TPC) daripada semua bahagian tumbuhan
berkolerasi secara positif dengan aktiviti antioksidan (DPPH,
FRAP)
yang menunjukkan bahawa sebatian fenolik mungkin memainkan peranan
penting dalam menyumbang kepada aktiviti antioksidan tumbuhan. Keputusan
kajian menekankan potensi spesies Curcuma yang kurang dieksploitasi
ini untuk menjadi satu sumber baru fitokimia dan antioksidan semula
jadi yang penting yang boleh digunakan dalam makanan fungsian dan
nutraseutik. Tambahan lagi, bukti kimia dan
biologi yang diperoleh dalam kajian ini memberikan rasional kepada
penggunaan berbeza pelbagai bahagian tumbuhan C. aeruginosa.
Kata
kunci: Antioksida; Curcuma aeruginosa; GC-MS/MS;
metabolomik
REFERENCES
Abdul Wahab,
I.R., Blagojevic, P.D., Radulovic, N.S. & Boylan, S. 2011. Volatiles of Curcuma
mangga Val. & Zijp (Zingiberaceae) from Malaysia. Chemistry and
Biodiversity 8(11): 2005-2014.
Angel, G.R.,
Vimala, B. & Nambisan, B. 2012. Phenolic content and antioxidant activity
in five underutilized starchy Curcuma species. International Journal
of Pharmacognosy and Phytochemical Research 4: 69-73.
Akiyama, K.,
Matsuzaki, K. & Hayashi, H. 2005. Plant sesquiterpenes induce hyphal
branching in arbuscular mycorrhizal fungi. Nature 435(7043): 824-827.
Atkinson,
J.A., Rasmussen, A., Traini, R., Voß, U., Sturrock, C., Mooney, S.J., Wells,
D.M. & Bennett, M.J. 2014. Branching out in roots: Uncovering form,
function and regulation. Plant Physiology 166(2): 538-550.
Behar, N.,
Tiwari, K.L. & Jadhav, S.K. 2013. Comparative phytochemical screening of
bioactive compounds in Curcuma caesia Roxb. and Curcuma longa. Research
Journal of Medicinal Plants 7: 113-118.
Benzie,
I.F.F. & Strain, J.J. 1996. The ferric reducing ability of plasma (FRAP) as
a measure of ‘antioxidant power’: The FRAP assay. Analytical Biochemistry 239:
70-76.
Boeing,
J.S., Barizoa, E.O., Costa, E., Silva, B., Montanher, P.F., de Cinque Almeida,
V. & Visentainer, J.V. 2014. Evaluation of solvent effect on the extraction
of phenolic compounds and antioxidant capacities from the berries: Application
of principal component analysis. Chemistry Central Journal 8: 48.
Chan,
E.W.C., Lim, Y.Y., Wong, L.F., Lianto, F.S., Wong, S.K., Lim, K.K., Joe, C.E.
& Lim, T.Y. 2008. Antioxidant and tyrosinase inhibition properties of
leaves and rhizomes of ginger species. Food Chemistry 109: 477-483.
Chan, W.C.,
Ng, V.P., Tan, V.V. & Low, Y.Y. 2011. Antioxidant and antibacterial
properties of Alpinia galanga, Curcuma longa and Etlingera
elatior (Zingiberaceae). Pharmacognosy Journal 3: 54-61.
Childs, K.L., Davidson, R.M.
& Buell, C.R. 2011. Gene coexpression network analysis as a source of
functional annotation for rice genes. PLOS One 6: e22196.
Choudury,
D., Ghosal, M., Das, A.P. & Mandal, P. 2011. Improvement
of propagation technique and evaluation of in vitro antioxidant
activity of Curcuma aeruginosa Roxburgh. In Recent
Studies in Biodiversity and Traditional Knowledge in India, edited
by Gosh, C. & Das, A.P. Gour College, Malda.
pp. 287-293.
Degenhardt, J., Köllner, T.G. &
Gershenzon, J. 2009. Monoterpene and sesquiterpene synthases and the origin of
terpene skeletal diversity in plants. Phytochemistry 70(15-16):
1621-1637.
Deepika, S., Narendra, K., Ritika, M.,
Shankhdhar, S.C. & Deepti, S. 2017. Stress induced alteration in the
antioxidant activity of in vitro adventitious roots of Withania
somnifera (Genotype Jawahar 20). International Journal of Plant Research 30: 68-72.
Dey, P., Dutta, S. & Chaudhuri, T.K.
2015. Comparative phytochemical profiling of Clerodendrum infortunatum L.
using GC-MS method coupled with multivariate statistical approaches. Metabolomics 5: 147.
Frankel, E.N. & Meyer, A.S. 2000. The
problems of using one-dimensional methods to evaluate multifunctional food and
biological antioxidants. Journal of the Science of Food & Agriculture 80:
1925-1941.
Galato, D.L., Ckless, K., Susin, M.F.,
Giacomelli, C., Ribeiro-do-Valle, R.M. & Spinelli, A. 2001. Antioxidant
capacity of phenolic and related compounds: Correlation among electrochemical,
visible spectroscopy methods and structure-antioxidant activity. Redox
Reports 6: 243-250.
Ghasemzadeh, A., Jaafar, H.Z., Ashkani,
S., Rahmat, A., Juraimi, A.S., Puyeh, A. & Mohamed, M.T.M. 2016. Variation
in secondary metabolite production as well as antioxidant and antibacterial
activities of Zingiber zerumbet (L.) at different stages of growth. BMC
Complementary and Alternative Medicine 16: 104-114.
Ghasemzadeh, A., Jaafar, H.Z. &
Rahmat, A. 2010. Elevated carbon dioxide increases contents of flavonoids and
phenolic compounds and antioxidant activities in Malaysian young ginger (Zingiber
officinale Roscoe.) varieties. Molecules 15: 7907-7922.
Gorinstein, S., Zachwieja, Z., Katrich,
E., Pawelzik, E., Haruenkit, R., Trakhtenberg, S. & Martin-Belloso, O.
2004. Comparison of the contents of the main antioxidant compounds and the
antioxidant activity of white grapefruit and his new hybrid. Lebensmittel-Wissenschaft
und-Technologie 37: 337-343.
Hans, J.S., Lee, S., Kim, H.Y. & Lee,
C.H. 2015. MS-based metabolite profiling of aboveground and root components of Zingiber
mioga and officinale. Molecules 20: 16170-16185.
Haissig, B.E. 1973. Influences of auxins
and auxin synergists on adventitious root primordium initiation and
development. New Zealand Journal of Forestry Science 2: 311-323.
Huang, Q., Huang, X., Deng, J., Liu, H.,
Liu, Y., Yu, K. & Huang, B. 2016. Differential gene expression between leaf
and rhizome in Atractylodes lancea: A comparative transcriptome
analysis. Frontiers in Plant Science 7: 348.
Jaleel, C., Riadh, K., Gopi, R.,
Manivannan, P., Inès, J., Al-Juburi, H., Chang-Xing, Z., Hong-Bo, S. &
Panneerselvam, R. 2009. Antioxidant defense responses: Physiological plasticity
in higher plants under abiotic constraints. Acta Physiologiae Plantarum 31(3):
427-436.
Javadi, N., Abas, F., Mediani, A., Hamid,
A.A., Khatib, A., Simoh, S. & Shaari, K. 2015. Effect of storage time on
metabolite profile and alpha-glucosidase inhibitory activity of Cosmos
caudatus leaves-GCMS based metabolomics approach. Journal of Food Drug
Analyses 23: 433-441.
Jiang, H., Xie, Z., Koo, H.J.,
McLaughlin, S.P., Timmermann, B.N. & Gang, D.R. 2006. Metabolic profiling
and phylogenetic analysis of medicinal Zingiber species: Tools for
authentication of ginger (Zingiber officinale Rosc.). Phytochemistry 67(15):
1673-1685.
Krajnc, A.U., Turinek, M. & Ivancici,
A. 2013. Morphological and physiological changes during adventitious root
formation as affected by auxin metabolism: Stimulatory effect of auxin
containing seaweed extract treatment. Agricultura 10: 17-27.
Mokrosnop, V.M. 2014. Functions of
tocopherols in the cells of plants and other photosynthetic organisms. Ukraninian
Biochemical Journal 86: 26-36.
Paduch, R., Kandefer-Szerszeń, M.,
Trytek, M. & Fiedurek, J. 2007. Terpenes: Substances useful in human
healthcare. Archivum Immunologiae et Therapiae Experimentalis (Warsz)
55: 315-327.
Pandey, A.K. & Chowdury, A.R. 2003.
Volatile constituents of the rhizomes oil of Curcuma caesia Rox India. Flavour
Fragrance Journal 18: 463-465.
Patel, R.M. & Patel, N.J. 2011. In
vitro antioxidant activity of coumarin compounds by DPPH, super oxide and
nitric oxide free radical scavenging methods. Journal of Advanced Pharmacy
Education & Research 1: 52-68.
Porfirio, S., Calado, M.L., Noceda, C.,
Cabrita, M.J., da Silva, M.G., Azadi, P. & Peixe, A. 2016. Tracking
biochemical changes during adventitious root formation in olive (Olea
europaea L.) Scientia Horticulturae 204: 41-53.
Saeed, A.I., Sharov, V., White, J., Li,
J., Liang, W., Bhagabati, N., Braisted, J., Klapa, M., Currier, T. &
Thiagarajan, M. 2003. TM4: A free, open-source system for microarray data
management and analysis. Biotechniques 34: 374-383.
Sandeep, S., Sanghamitra, N. &
Sujata, M. 2015. Differential effect of soil and environment on metabolic
expression of turmeric (Curcuma longa cv. Roma). Indian Journal of
Experimental Biology 53: 406-411.
Sellappan, S., Akoh, C.C. & Krewer,
G. 2002. Phenolic compounds and antioxidant capacity of georgia-grown
blueberries and blackberries. Journal of Agricultural and Food Chemistry 50:
2432-2438.
Simoh, S. & Zainal, A. 2015. Chemical
profiling of Curcuma aeruginosa Roxb. rhizome using different techniques
of solvent extraction. Asian Pacific Journal of Tropical Biomedicine 5:
412-417.
Srivastava, S., Chitransi, N.,
Srivastava, S., Dan, M., Rawat, A. & Pushpangadan, P. 2006. Pharmacognostic
of Curcuma aeruginosa Roxb. Natural Product Science 12: 162-165.
Tanvir, E.M., Hossen, S., Hossain, M.F.,
Afroz, R., Gan, S.H., Khalil, M.I. & Karim, N. 2017. Antioxidant properties
of popular turmeric (Curcuma longa) varieties from Bangladesh. Journal
of Food Quality 2017: 8471785.
Zhang, A., Wang, Y., Li, H.L., Wen, Q.,
Yin, H., Zeng, N.K., Lai, W.Y., Wei, N., Cheng, S.Q., Kang, S.L., Chen, F.
& Li, Y.B. 2015. Simultaneous quantification of seventeen bioactive
components in rhizome and aerial parts of Alpinia officinarum Hance
using LC-MS/MS. Analytical Methods 7: 4919-4930.
*Corresponding author; email: sanimah@mardi.gov.my
|