Sains Malaysiana 47(12)(2018): 3095–3105
http://dx.doi.org/10.17576/jsm-2018-4712-20
Prediction of Colorectal Cancer Driver
Genes from Patients’ Genome Data
(Penentuan Gen Pemandu Kanser Kolorektum daripada
Data Genomik Pesakit)
MUHAMMAD-IQMAL ABDULLAH
& NOR AZLAN NOR MUHAMMAD*
Centre for
Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 30 May 2018 /Accepted: 14 September
2018
ABSTRACT
Colorectal cancer refers to the
cancer that occurs in the colon and rectum. It has been established as the
third most common cancer and the forth one in causing worldwide mortality.
Cancer caused by the mutation of several genes that usually involved in the
regulation of cell proliferation, growth and cell death. The mutation that
leads to abnormal function of genes, either in enabling the genes to gain or
loss of function was termed as driver mutation and the genes with driver
mutation ability was termed as driver genes. The identification of driver genes
provides insight on mechanistic process of cancer development where this
information can be used to further understand their mode of action for causing
dysregulation in signaling pathways. In this study, two bioinformatic tools,
i.e. CGI and iCAGES were used to predict potential driver
genes from the genome of eight colorectal cancer patients with annotated
variants datasets. 44 unique driver genes and 21 pathways have been identified;
such as p53 signaling, PI3K-AKT, Endocrine resistance, MAPK and cell cycle pathways. The identification of these pathways can
lead to the identification of potential drugs targeting these pathways.
Keywords: Cancer driver genes;
colorectal cancer; pathway analysis; precision medicine
ABSTRAK
Kanser kolorektum adalah kanser yang
berlaku pada kolon dan juga rektum. Ia merupakan kanser ketiga yang
paling kerap dilaporkan serta yang keempat menjadi punca kematian
tertinggi di seluruh dunia. Kanser berlaku disebabkan oleh mutasi
daripada gen tertentu yang terlibat di dalam pengawalaturan proliferasi,
pertumbuhan dan kematian sel. Mutasi yang mencetuskan perubahan
pada fungsi gen sama ada meningkatkan atau menghilangkan fungsinya
dikenali sebagai mutasi pemandu, manakala gen yang mempunyai mutasi
pemandu dikenali sebagai gen pemandu kanser. Pengenalpastian gen
pemandu membolehkan mekanisme pembentukan kanser dapat dikenal pasti
melalui peranannya dalam pengawalaturan tapak jalan. Dalam kajian
ini, dua perisian bioinformatik iaitu CGI dan iCAGES telah digunakan
untuk mengenal pasti calon gen pemandu daripada set data varian
yang telah dianotasi daripada genom lapan pesakit kanser kolorektum.
Sebanyak 44 gen pemandu dan 21 tapak jalan terlibat telah dikenal
pasti; antaranya adalah tapak jalan pengisyaratan p53, PI3K-AKT, rintangan endokrin dan MAPK.
Kesemua tapak jalan ini berpotensi untuk dijadikan sasaran terapi.
Kata
kunci: Analisis tapak jalan; gen pemandu kanser; kanser kolorektum;
perubatan jitu
REFERENCES
Adzhubei,
I., Jordan, D.M. & Sunyaev, S.R. 2015. Predicting functional effect of
human missense mutations using PolyPhen-2. Current Protocols in Human
Genetics Unit 7.20.
Alberts, B.
2008. Tumor suppressor genes and oncogenes: Genes that prevent and cause
cancer. In Molecular Biology of the Cell, 5th ed., edited by
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. & Walter, P.
Garland Science. pp. 1230-1256.
Apostolou, P. &
Papasotiriou, I. 2017. Current perspectives on CHEK2 mutations in breast
cancer. Breast Cancer: Targets and Therapy 9: 331-335.
Argani, P., Lui, M.Y., Couturier, J., Bouvier, R., Fournet,
J.C. & Ladanyi, M. 2003. A novel CLTC-TFE3 gene fusion in pediatric renal
adenocarcinoma with t(X;17)(p11.2;q23). Oncogene 22(34): 5374-5378.
Bachetti, T., Di Paolo,
D., Di Lascio, S., Mirisola, V., Brignole, C., Bellotti, M. & Caffa, I.
2010. PHOX2B-mediated regulation of ALK expression: In vitro identification
of a functional relationship between two genes involved in neuroblastoma. PLoS
ONE 5(10): e13108.
Barneda-Zahonero, B.
& Parra, M. 2012. Histone deacetylases and cancer. Molecular Oncology 6(6):
579-589.
Bhaskara, S., Knutson,
S.K., Jiang, G., Chandrasekharan, M.B., Wilson, A.J., Zheng, S. &
Yenamandra, A. 2011. Role for histone deacetylase 3 in maintenance of genome
stability Genome Stability 18(5): 436-447.
Bhoumik, A., Fichtman,
B., DeRossi, C., Breitwieser, W., Kluger, H.M., Davis, S. & Subtil, A.
2008. Suppressor role of activating transcription factor 2 (ATF2) in skin
cancer. Proceedings of the National Academy of Sciences 105(5):
1674-1679.
Black, P. 2014. Frequent
truncating mutations of STAG2 in bladder cancer. Urology 83(4): 691-692.
Chen, Y., McGee, J.,
Chen, X., Doman, T.N., Gong, X., Zhang, Y. & Hamm, N. 2014. Identification
of druggable cancer driver genes amplified across TCGA datasets. PLoS ONE 9(5):
e98293.
Cho, A., Shim, J.E.,
Kim, E., Supek, F., Lehner, B. & Lee, I. 2016. MUFFINN: Cancer gene
discovery via network analysis of somatic mutation data. Genome Biology 17(1):
129.
Chye, G.L.C., Rampal, S.
& Yahaya, H. 2008. Cancer incidence in Peninsular Malaysia 2003-2005. National
Cancer Registry. pp. 53-57.
Créancier, L.,
Vandenberghe, I., Gomes, B., Dejean, C., Blanchet, J.C., Meilleroux, J. &
Guimbaud, R. 2015. Chromosomal rearrangements involving the NTRK1 gene in
colorectal carcinoma. Cancer Letters 365(1): 107-111.
Davies, H., Bignell,
G.R., Cox, C., Stephens, P., Edkins, S., Clegg, S. & Teague, J. 2002.
Mutations of the BRAF gene in human cancer. Nature 417(6892): 949-954.
Dees, N.D., Zhang, Q.,
Kandoth, C., Wendl, M.C., Schierding, W., Koboldt, D.C. & Mooney, T. B.
2012. MuSiC: Identifying mutational significance in cancer genomes. Genome
Research 22(8): 1589-1598.
Fang, J.Y. &
Richardson, B.C. 2005. The MAPK signalling pathways and colorectal cancer. Lancet
Oncology 6(5): 322-327.
Folsom, A.R., Pankow,
J.S., Peacock, J.M., Bielinski, S.J., Heiss, G. & Boerwinkle, E. 2008.
Variation in TCF7L2 and increased risk of colon cancer: The atherosclerosis
risk in communities (ARIC) study. Diabetes Care 31(5): 905-909.
Foo, J., Liu, L.L.,
Leder, K., Riester, M., Iwasa, Y., Lengauer, C. & Michor, F. 2015. An
evolutionary approach for identifying driver mutations in colorectal cancer. PLoS
Computational Biology 11(9): 1-19.
Fozzatti, L., Park,
J.W., Zhao, L., Willingham, M.C. & Cheng, S.Y. 2013. Oncogenic actions of
the nuclear receptor corepressor (NCOR1) in a mouse model of thyroid cancer. PLoS
ONE 8(6): 1-10.
Harris, S.L. &
Levine, A.J. 2005. The p53 pathway: Positive and negative feedback loops. Oncogene 24(17): 2899-2908.
Huang, T., Kang, W.,
Cheng, A.S.L., Yu, J. & To, K.F. 2015. The emerging role of slit-robo
pathway in gastric and other gastro intestinal cancers. BMC Cancer 15(1):
1-9.
Iacopetta, B., Russo,
A., Bazan, V., Dardanoni, G., Gebbia, N., Soussi, T. & Kerr, D. 2006.
Functional categories of TP53 mutation in colorectal cancer: Results of an
international collaborative study. Annals of Oncology 17(5): 842-847.
Iwatsuki, M., Mimori,
K., Lshii, H., Yokobori, T., Takatsuno, Y., Sato, T. & Toh, H. 2010. Loss
of FBXW7, a cell cycle regulating gene, in colorectal cancer: Clinical
significance. International Journal of Cancer 126(8): 1828-1837.
Jia, L., Zhou, Z.,
Liang, H., Wu, J., Shi, P., Li, F. & Wang, Z. 2016. KLF5 promotes breast
cancer proliferation, migration and invasion in part by upregulating the
transcription of TNFAIP2. Oncogene 35(16): 2040-2051.
Kanner, J. 2007. Dietary
advanced lipid oxidation endproducts are risk factors to human health. Molecular
Nutrition and Food Research 51(9): 1094-1101.
Katono, K., Sato, Y.,
Jiang, S.X., Kobayashi, M., Nagashio, R., Ryuge, S. & Fukuda, E. 2015.
Prognostic significance of MYH9 expression in resected non-small cell lung
cancer. Plos One 10(3): e0121460.
Kim, P.J., Plescia, J.,
Clevers, H., Fearon, E.R. & Altieri, D.C. 2003. Surviving and molecular
pathogenesis of colorectal cancer. Lancet 362(9379): 205-209.
Kodach, L.L.,
Wiercinska, E., de Miranda, N.F.C.C., Bleuming, S.A., Musler, A.R.,
Peppelenbosch, M.P. & Dekker, E. 2008. The bone morphogenetic protein
pathway is inactivated in the majority of sporadic colorectal cancers. Gastroenterology 134(5): 1332-1341.
Kwong, L.N. & Dove,
W.F. 2009. APC and its modifiers in colon cancer. Advances in Experimental
Medicine and Biology 656: 85-106.
Leiserson, M.D.M.,
Vandin, F., Wu, H.T., Dobson, J.R., Eldridge, J.V., Thomas, J.L. &
Papoutsaki, A. 2014. Pan-cancer network analysis identifies combinations of
rare somatic mutations across pathways and protein complexes. Nature
Genetics 47(2): 106-114.
Lewis, M.J., Liu, J.,
Falk Libby, E., Lee, M., Crawford, N.P.S. & Hurst, D.R. 2016. SIN3A and
SIN3B differentially regulate breast cancer metastasis. Oncotarget 7(48):
78713-78725.
Li, X.L., Zhou, J.,
Chen, Z.R. & Chng, W.J. 2015. p53 mutations in colorectal cancer:
Molecular pathogenesis and pharmacological reactivation. World Journal of
Gastroenterology 21(1): 84-93.
Lobry, C., Oh, P. &
Aifantis, I. 2011. Oncogenic and tumor suppressor functions of Notch
in cancer: it's NOTCH what you think. The Journal of Experimental
Medicine 208(10): 1931-1935.
Louis, P., Hold, G.L.
& Flint, H.J. 2014. The gut microbiota, bacterial metabolites and
colorectal cancer. Nature Reviews Microbiology 12(10): 661-672.
Luo, S.Y. & Lam,
D.C. 2013. Oncogenic driver mutations in lung cancer. Translational
Respiratory Medicine 1(1): 6.
Ma, J., Lyu, H., Huang,
J. & Liu, B. 2014. Targeting of erbB3 receptor to overcome resistance in
cancer treatment. Molecular Cancer 13(1): 1-9.
Marx, V. 2014. Cancer
genomes: Discerning drivers from passengers. Nature Methods 11(4):
375-379.
Mathur, R., Alver, B.H.,
San Roman, A.K., Wilson, B.G., Wang, X., Agoston, A.T. & Park, P.J. 2017.
ARID1A loss impairs enhancer-mediated gene regulation and drives colon cancer
in mice. Nature Genetics 49(2): 296-302.
Mehta, M.S., Vazquez, A., Kulkarni, D.A.,
Kerrigan, J.E., Atwal, G., Metsugi, S. & Toppmeyer, D.L. 2011. Polymorphic
variants in TSC1 and TSC2 and their association with breast cancer phenotypes. Breast Cancer Research and Treatment 125(3): 861-868.
Menon, A.G., Morreau, H., Tollenaar, R.A.E.M., Alphenaar, E.,
Van Puijenbroek, M., Putter, H. & Janssen-van Rhijn, C.M. 2002.
Downregulation of HLA-A expression correlates with a better prognosis in
colorectal cancer patients. Laboratory Investigation 82(12): 1725-1733.
Moser, C., Lang, S.A.
& Stoeltzing, O. 2009. Heat-shock protein 90 (Hsp90) as a molecular target
for therapy of gastrointestinal cancer. Anticancer Research 29(6):
2031-2042.
O'Keefe, S.J.D. 2016. Diet,
microorganisms and their metabolites and colon cancer. Nature
Reviews Gastroenterology & Hepatology 13(12): 691-706.
Park, S.W., Hur, S.Y.,
Yoo, N.J. & Lee, S.H. 2010. Somatic frameshift mutations of bone
morphogenic protein receptor 2 gene in gastric and colorectal cancers with
microsatellite instability. Apmis 118(11): 824-829.
Pelttari, L.M., Kiiski,
J., Nurminen, R., Kallioniemi, A., Schleutker, J., Gylfe, A. & Aaltonen,
L.A. 2012. A finnish founder mutation in RAD51D: Analysis in breast, ovarian,
prostate, and colorectal cancer. Journal of Medical Genetics 49(7):
429-432.
Petitjean, A., Achatz,
M.I.W., Borresen-Dale, A.L., Hainaut, P. & Olivier, M. 2007. TP53 mutations
in human cancers: Functional selection and impact on cancer prognosis and
outcomes. Oncogene 26(15): 2157-2165.
Pham, T.T., Angus, S.P.
& Johnson, G.L. 2013. MAP3K1: Genomic alterations in cancer and function in
promoting cell survival or apoptosis. Genes and Cancer 4(11-12):
419-426.
Phipps, A.I., Buchanan,
D.D., Makar, K.W., Win, A.K., Baron, J.A., Lindor, N.M. & Potter, J.D.
2013. KRAS-mutation status in relation to colorectal cancer survival: The joint
impact of correlated tumour markers. British Journal of Cancer 108(8):
1757-1764.
Prasad, C.P.,
Chaurasiya, S.K., Guilmain, W. & Andersson, T. 2016. WNT5A signaling
impairs breast cancer cell migration and invasion via mechanisms independent of
the epithelial-mesenchymal transition. Journal of Experimental and Clinical
Cancer Research 35(1): 1-15.
Qiu, L., Wu, J., Pan,
C., Tan, X., Lin, J., Liu, R. & Chen, S. 2016. Downregulation of CDC27
inhibits the proliferation of colorectal cancer cells via the accumulation of
p21Cip1/ Waf1. Cell Death & Disease 7(651): e2074.
Radzi, M., Hassan, A.,
Ismail, I., Azri, M., Suan, M., Ahmad, F. & Khamizar, W. 2016. Incidence
and mortality rates of colorectal cancer in Malaysia. Epidemiol. Health 38:
6-10.
Ragnarsson-Olding, B.K.,
Karsberg, S., Platz, A. & Ringborg, U.K. 2002. Mutations in the TP53 gene
in human malignant melanomas derived from sun-exposed skin and unexposed
mucosal membranes. Melanoma Research 12(5): 453-463.
Ren, Y., Cao, B., Law,
S., Xie, Y., Lee, P.Y., Cheung, L. & Chen, Y. 2005. Hepatocyte growth
factor promotes cancer cell migration and angiogenic factors expression: A
prognostic marker of human esophageal squamous cell carcinomas. Clinical
Cancer Research 11(17): 6190-6197.
Rivlin, N., Brosh, R.,
Oren, M. & Rotter, V. 2011. Mutations in the p53 tumor suppressor gene:
Important milestones at the various steps of tumorigenesis. Genes and Cancer 2(4): 466-474.
Rump, A., Benet-Pages,
A., Schubert, S., Kuhlmann, J.D., Janavičius, R., Macháčková, E.
& Foretová, L. 2016. Identification and functional testing of ERCC2
mutations in a multi-national cohort of patients with familial breast- and
ovarian cancer. PLoS Genetics 12(8): 1-18.
Ryan-Harshman, M. &
Aldoori, W. 2007. Diet and colorectal cancer: Review of the evidence.
Canadian Family Physician Médecin de Famille Canadien 53(11):
1913-1920.
Shao, L., Lai, M. &
Huang, Q. 2001. Mutagen sensitivity and p53 expression in colorectal cancer in
China. Postgraduate Medical Journal 77: 713-716.
Sim, N.L., Kumar, P.,
Hu, J., Henikoff, S., Schneider, G. & Ng, P.C. 2012. SIFT web server:
Predicting effects of amino acid substitutions on proteins. Nucleic Acids
Research 40(W1): W452-W457.
Sithanandam, G. &
Anderson, L.M. 2008. The ERBB3 receptor in cancer and cancer gene therapy. Cancer
Gene Therapy 15(7): 413-448.
Slattery, M.L., Folsom,
A.R., Wolff, R., Herrick, J., Caan, B.J. & Potter, J.D. 2009. Tumor markers
and rectal cancer: Support for an inflammation-related pathway. International
Jourmal of Cancer 17(4): 978-982.
Tan, C. & Du, X.
2012. KRAS mutation testing in metastatic colorectal cancer. World Journal
of Gastroenterology 18(37): 5171-5180.
Tian, S., Simon, I.,
Moreno, V., Roepman, P., Tabernero, J., Snel, M. & Veer, L. 2013. A
combined oncogenic pathway signature of BRAF, KRAS and PI3KCA mutation improves
colorectal cancer classification and cetuximab treatment prediction. Gut 62(4):
540-549.
Tokheim, C.,
Papadopoulis, N., Kinzler, K.W., Vogelstein, B. & Karchin, R. 2016.
Evaluating the evaluation of cancer driver genes. bioRxiv 113(50):
060426.
Van Agthoven, T.,
Sieuwerts, A.M., Veldscholte, J., Meijer-Van Gelder, M.E., Smid, M., Brinkman,
A. & Den Dekker, A.T. 2009. CITED2 and NCOR2 in anti-oestrogen resistance
and progression of breast cancer. British Journal of Cancer 101(11):
1824-1832.
Waddell, N., Pajic, M.,
Patch, A., Chang, D.K., Kassahn, K.S., Bailey, P. & Johns, A.L. 2015. Whole
genomes redefine the mutational landscape of pancreatic cancer. Nature 518(7540):
495-501.
Wang, C., Li, Q., Liu,
F., Chen, X., Liu, B., Nesa, E.U., Guan, S., Han, L., Tan, B., Wang, N., Wang,
X., Song, Q., Jia, Y., Wang, J., Lu, M. & Chen, Y. 2016. Notch2 as a
promising prognostic biomarker for oesophageal squamous cell carcinoma. Scientific
Reports 6 (25722): 1-10.
Wang, X.D., Inzunza, H.,
Chang, H., Qi, Z., Hu, B., Malone, D. & Cogswell, J. 2013. Mutations in the
hedgehog pathway genes SMO and PTCH1 in human gastric tumors. PLoS ONE 8(1):
1-8.
Wang, R., Zhang, Y.,
Pan, Y., Li, Y., Hu, H. & Cai, D. 2015. Comprehensive investigation of
oncogenic driver mutations in Chinese non-small cell lung cancer patients. Oncotarget 6(33): 1-9.
Wang, W., Chen, Y.,
Deng, J., Zhou, J., Gu, X., Tang, Y. & Zhang, G. 2015. Cullin1 is a novel
prognostic marker and regulates the cell proliferation and metastasis in
colorectal cancer. Journal of Cancer Research and Clinical Oncology 141(9):
1603-1612.
Williams, C.S., Bernard,
J.K., Beckler, M.D., Almohazey, D., Washington, M.K., Smith, J.J. & Frey,
M.R. 2015. ERBB4 is over-expressed in human colon cancer and enhances cellular
transformation. Carcinogenesis 36(7): 710-718.
Wu, D.S., Chen, C., Wu, Z.J., Liu, B.,
Gao, L., Yang, Q. & Chen, W. 2016. ATF2 predicts poor prognosis and
promotes malignant phenotypes in renal cell carcinoma. Journal of
Experimental and Clinical Cancer Research 35(1): 1-11.
Yao, F., Zhang, C., Du, W., Liu, C. &
Xu, Y. 2015. Identification of gene-expression signatures and protein markers
for breast cancer grading and staging. PLoS ONE 10(9): 1-17.
Zhan, T., Rindtorff, N. & Boutros, M.
2017. Wnt signaling in cancer. Oncogene 36(11): 1461-1473.
*Corresponding author; email: norazlannm@ukm.edu.my
|