Sains Malaysiana 47(1)(2018): 181–187
http://dx.doi.org/10.17576/jsm-2018-4701-21
Enhancement
of Thermoelectric Properties of Yb0.25Co4Sb12
Skutterudites through Ni Substitution
(Peningkatan Sifat Termoelektrik bagi Bahan Skuterudit Yb0.25Co4Sb12 melalui Penggantian Ni)
MOHAMED BASHIR
ALI
BASHIR1,
SUHANA
MOHD
SAID2*, MOHD
FAIZUL
MOHD
SABRI2, YUZURU
MIYAZAKI3, DHAFER
ABDUL AMEER SHNAWAH2, MASANORI
SHIMADA3 & MOHAMED HAMID ELSHEIKH4
1Department
of Mechanical Engineering, Faculty of Engineering, Eldaein University,
63312 Eldaein, Sudan
2University of Malaya,
50603 Kuala Lumpur, Federal Territory, Malaysia
3Tohoku University, 2
Chome-1-1 Katahira, Aoba Ward, Sendai, Miyagi Prefecture 980-8577,
Japan
4R&D,
Cree Inc., Durham,
NC 27703, USA
Received: 28
November 2016/Accepted: 9 June 2017
ABSTRACT
In this work, we investigate
the effects of Ni doping on the thermoelectric (TE)
properties of Yb0.25Co4Sb12 sample.
Yb0.25Co4-xNixSb12 (0 ≤ x ≤ 0.5) samples were prepared by
mechanical alloying and subsequently consolidated by spark plasma sintering.
The morphology of consolidated samples were characterized by X-ray diffraction (XRD) and scanning electron
microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS).
The thermoelectric properties of bulk samples were measured from room
temperature to 800 K. The XRD analysis confirmed that, the
successful formation of the Co4Sb12 skutterudite phase and Ni is substituted into Co site of
the skutterudite crystal lattice. Moreover, the
electrical resistivity decreased to 14.6 μΩm at 785 K for Yb0.25Co3.5Ni0.5Sb12 sample,
due to increase of the electron concentration by Ni-addition. The absolute Seebeck coefficient reached the highest value of 223 μV/K at 592 K for Yb0.25Co3.7Ni0.3Sb12 sample,
thus yielding a maximum value of power factor of 2.41 × 10-3 W/mK2 at
592 K. The highest dimensionless thermoelectric figure of merit value ZT of
0.49 at 692 K has been achieved for the Yb0.25Co3.7Ni0.3Sb12 sample,
compared to ZT=0.06 for the Yb0.25Co4Sb12 sample
at same temperature. This work indicates a strategy to improve the thermoelectric
performance by Ni substitution of Co sites in the Yb0.25Co4Sb12 skutterudite through simultaneous improvement of its
electrical conductivity, Seebeck coefficient and
reduction of its thermal conductivity.
Keywords: Mechanical
alloying; Ni-doping; skutterudite; thermoelectric
ABSTRAK
Dalam kajian ini,
kesan pendopan Ni ke atas sifat
Yb0.25Co4Sb12
telah dikaji. Sampel Yb0.25Co4-xNixSb12
(0 ≤ x ≤ 0.5) telah
disediakan dengan
kaedah pengaloian mekanikal dan seterusnya digabungkan dengan pensinteran pencucuh plasma.
Morfologi
untuk sampel gabungan
telah dicirikan
oleh pembelauan sinar-X (XRD) dan
imbasan mikroskop
elektron berserta tenaga serakan X-ray spektroskopi (SEM-EDS). Ciri termoelektrik sampel telah diukur
daripada suhu
bilik ke 800 K. Analisis XRD mengesahkan
bahawa Ni berjaya
didopkan ke dalam
Yb0.25Co4-xNixSb12
CoSb3
dalam fasa skutterudite,
dengan Ni menggantikan
beberapa lokasi Co dalam kekisi kristal
skuterudit. Selain
itu, kerintangan elektrik menurun kepada 14.6 μΩm di
785 K bagi sampel
Yb0.25Co3.5Ni0.5Sb12,
disebabkan oleh
peningkatan bilangan pembawa cas elektron
oleh Ni. Pekali
Seebeck mutlak mencapai nilai tertinggi 223 μV/K pada 592 K bagi sampel Yb0.25Co3.7Ni0.3Sb12
, lalu menghasilkan
nilai maksimum faktor kuasa 2.41 × 10-3 W/MK2
pada 592 K. Angka merit, ZT
yang optimum adalah 0.49
pada 692 K telah
dicapai untuk sampel Yb0.25Co3.7Ni0.3Sb12.
Kajian
ini menunjukkan strategi untuk meningkatkan prestasi termoelektrik melalui penggantian Ni pada bahagian Co dalam bahan skutterudite Yb0.25Co4Sb12,
sekaligus menambahbaik
kekonduksian elektrik, pekali Seebeck dan pengurangan kekonduksian haba.
Kata kunci: Ni-dop;
pengaloian mekanikal;
skuterudit; termoelektrik
REFERENCES
Bashir,
M.B.A., Said, S.M., Sabri, M.F.M., Shnawah, D.A. & Elsheikh,
M.H. 2014. Recent advances on Mg 2 Si 1− x Sn x
materials for thermoelectric generation. Renewable and Sustainable
Energy Reviews 37: 569-584.
Da Ros, V., Masschelein, P., Candolfi, C., Leszczynski, J., Kosalathip, V., Dauscher, A.,
Lenoir, B., Stiewe, C. & Müller, E. 2007. Effect
of the Ni substitution on CoSb3 partially filled with In and Yb. Paper presented
at the 5th European Conference on Thermoelectrics,
Odessa, Ukraine.
Elsheikh,
M.H., Sabri, M.F.M., Said, S.M., Miyazaki, Y., Masjuki, H., Shnawah, D.A.,
Abdullah, N., Naito, S. & Bashir, M.B.A. 2016. Microstructural modification of Co4Sb12 skutterudite thermoelectric material through al
exceed doping. Science of Advanced Materials 8(11): 2121-2127.
Elsheikh, M.H., Sabri,
M.F.M., Said, S.M., Miyazaki, Y., Masjuki, H., Shnawah, D.A., Naito, S. & Bashir, M.B.A. 2017. Rapid preparation of bulk AlxYb0. 25Co4Sb12 (x= 0, 0.1, 0.2, 0.3) skutterudite thermoelectric
materials with high figure of merit ZT= 1.36. Journal of Materials Science 52(9):
5324-5332.
Elsheikh,
M.H., Shnawah, D.A., Sabri,
M.F.M., Said, S.B.M., Hassan, M.H., Bashir, M.B.A. & Mohamad, M. 2014. A
review on thermoelectric renewable energy: Principle parameters that affect
their performance. Renewable and Sustainable Energy Reviews 30: 337-355.
Geng, H., Ochi, S. & Guo, J. 2007. Solidification
contraction-free synthesis for the Yb 0.15 Co 4 Sb 12 bulk material. Applied
Physics Letters 91(2): 022106.
Il-Ho, K.I.M., Kwan-Ho, P., Soon-Chul,
U., Soon-Mok, C. & Won-Seon,
S. 2010. Transport properties of Sn-doped CoSb_3 skutterudites. Journal of the Korean Physical Society 57(41): 1000.
Kawaharada,
Y., Kurosaki, K., Uno, M. & Yamanaka, S. 2001. Thermoelectric properties of CoSb 3. Journal of Alloys and Compounds 315(1): 193-197.
Park, K.H., Kim, I.H., Choi, S.M., Seo,
W.S., Cheong, D.I. & Kang, H. 2012. Preparation and
thermoelectric properties of p-Type Yb-filled skutterudites. Journal of Electronic Materials 42(7):
1377-1381.
Park, K.H., Seo, W.S., Shin, D.K. & Kim, I.H. 2014. Thermoelectric properties of Yb-filled
CoSb3 skutterudites. Journal of the Korean
Physical Society 65(4): 491-495.
Peng,
J., Yang, J., Song, X., Chen, Y. & Zhang, T. 2006. Effect of Fe substitution on the thermoelectric transport
properties of CoSb 3-based Skutterudite compound. Journal of Alloys and Compounds 426(1): 7-11.
Said,
S.M., Bashir, M.B.A., Sabri, M.F.M., Miyazaki, Y., Shnawah, D.A.A., Hakeem, A.S., Shimada, M., Bakare, A.I., Nik Ghazali, N.N.
& Elsheikh, M.H. 2017. Enhancement of thermoelectric behavior of La0.5Co4Sb12−xTex skutterudite materials. Metallurgical and
Materials Transactions A48(6): 3073-3081.
Takizawa,
H., Miura, K., Ito, M., Suzuki, T. & Endo, T. 1999. Atom insertion into the CoSb3 skutterudite host lattice under high pressure. Journal of Alloys and Compounds 282(1-2):
79-83.
Tritt,
T.M., Nolas, G., Slack, G., Ehrlich, A., Gillespie,
D. & Cohn, J.L. 1996. Low-temperature
transport properties of the filled and unfilled IrSb3 skutterudite system. Journal of Applied Physics 79(11): 8412-8418.
Truong,
D.N., Kleinke, H. & Gascoin,
F. 2014. Thermoelectric properties of higher manganese
silicide/multi-walled carbon nanotube composites. Dalton Transactions 43: 15092-15097.
Yang,
J., Chen, Y., Zhu, W., Peng, J., Bao, S., Fan, X.A.
& Duan, X.K. 2006. Effect of La filling on thermoelectric properties of LaxCo3.6Ni0.4Sb12-filled skutterudite prepared by MA–HP method. Journal
of Solid State Chemistry 179(1): 212-216.
Zhang,
J., Lu, Q., Liu, K., Zhang, L. & Zhou, M. 2004. Synthesis and
thermoelectric properties of CoSb3 compounds by spark plasma
sintering. Materials Letters 58(14): 1981-1984.
*Corresponding author; email: smsaid@um.edu.my
|