Sains Malaysiana 47(1)(2018): 189–193
http://dx.doi.org/10.17576/jsm-2018-4701-22
The Effect of Annealing
to the Hardness of High Y2O3-Oxide Dispersion
Strengthened (ODS) Ferritic Steels
(Kesan Sepuh Lindap terhadap Kekerasan Keluli Ferit ODS-Y2O3 Tinggi)
FARHA MIZANA SHAMSUDIN1*, SHAHIDAN RADIMAN1, YUSOF ABDULLAH2 & NASRI A. HAMID3
1Nuclear Science Programme, School
of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Material Technology Group,
Industrial Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang,
Selangor Darul Ehsan, Malaysia
3Center for Nuclear Energy,
College of Engineering, Universiti Tenaga Nasional, Putrajaya Campus, Jalan Ikram
UNITEN, 43000 Kajang, Selangor Darul Ehsan, Malaysia
Received: 6 October 2016/Accepted:
13 June 2017
ABSTRACT
The
purpose of this study was to investigate the effect of annealing to the
hardness of high Y2O3-oxide
dispersion strengthened (ODS) ferritic steels. The samples were
prepared by mechanical alloying method followed by Cold Isostatic Pressing (CIP).
After compaction process, the samples were sintered at 1100°C for 1 h in a tube
furnace. The crystal structure and morphology of samples were analyzed by X-ray
Diffraction (XRD) measurement and characterized by using field
emission scanning electron microscope (FESEM), respectively. The
hardness of samples was measured by using a micro-Vickers hardness tester with
a load of 200 gf at annealing temperature of 600°C, 800°C and 1000°C,
respectively. The Vickers hardness value (HV0,2)
versus annealing temperature graph showed that the hardness of all samples
started to decrease at temperature of 600°C due to grain growth. The hardness
value of all samples (1Y and 5Y) identified at this annealing temperature is
855 HV0,2 and 808 HV0, 2, respectively.
Keywords:
Electron microscopy; hardness measurement; mechanical alloying; ODS ferritic
steel; XRD measurement
ABSTRAK
Tujuan
kajian ini dijalankan adalah untuk mengkaji kesan sepuh lindap terhadap
kekerasan keluli ferit ODS-Y2O3 tinggi.
Sampel bagi kajian ini telah dibangunkan dengan menggunakan kaedah pengaloian
mekanik dan diikuti dengan kaedah Tekan Isostasi Sejuk (CIP).
Selepas proses pemampatan, sampel didedahkan dengan rawatan haba pada suhu
1100°C selama 1 jam di dalam relau pembakaran. Struktur kristal dan morfologi
sampel masing-masing telah dianalisis dengan menggunakan Meter Belauan Sinar-X
(XRD)
dan dicirikan dengan menggunakan mikroskop elektron pengimbas pancaran medan (FESEM).
Kekerasan sampel pula telah diukur dengan menggunakan alat pengukur
mikro-Vickers dengan beban sebanyak 200 gf masing-masing untuk suhu sepuh
lindap pada 600°C, 800°C dan 1000°C. Graf nilai kekerasan Vickers (HV0,2)
melawan suhu sepuh lindap bagi semua sampel telah mendedahkan bahawa kekerasan
bagi semua sampel mula menurun pada suhu 600°C disebabkan oleh fenomena
pembesaran zarah. Nilai kekerasan untuk semua sampel (1Y dan 5Y) yang telah
dikenal pasti pada suhu sepuhlindap ini (600°C) adalah masing-masing sebanyak
855 HV0,2 dan 808 HV0,2.
Kata kunci: Keluli ferit ODS; mikroskop elektron;
pencirian XRD; pengaloian mekanikal;pengukuran kekerasan
REFERENCES
Alinger, M.J., Odette, G.R. &
Lucas, G.E. 2002. Tensile and fracture toughness properties of MA957:
Implications to the development of nanocomposited ferritic alloys. Journal
of Nuclear Materials 307-311(Part 1): 484-489.
Boulnat, X., Fabregue, D., Perez,
M., Mathon, M.H. & de Carlan, Y. 2013. High temperature tensile properties
of nano-oxide dispersion strengthened ferritic steels produced by mechanical
alloying and spark plasma sintering. Metallurgical and Materials
Transactions A 44: 2461-2465.
Fischer, J.J. 1978. Dispersion
Strengthened Ferritic Alloy for Use in Liquid-Metal Fast Breeder Reactors
(LMFBRS). US4075010A.
Gelles, D.S. 1996.
Microstructural examination of commercial ferritic alloys at 200 dpa. Journal
of Nuclear Materials 233- 237: 293-298.
Hayashi, T., Sarosi, P.M.,
Schneibel, J.H. & Mills, M.J. 2008. Creep response and deformation
processes in nanocluster-strengthened ferritic steels. Acta Materialia 56:
1407-1416.
Hoeltzer, D.T., Bentley, J.,
Sokolov, M.A., Miller, M.K., Odette, G.R. & Alinger, M.J. 2007. Influence
of particle dispersions on the high-temperature strength of ferritic alloys. Journal
of Nuclear Materials 367-370(Part A): 166-172.
Kim, T.K., Noh, S., Kang, S.H.,
Park, J.J., Jin, H.J., Lee, M.K., Jang, J. & Rhee, C.K. 2016. Current
status and future perspective of advanced radiation resistant oxide dispersion
strengthened steel (ARROS) development for nuclear reactor system applications. Journal of Nuclear Engineering and Technology 48: 572-594.
Klueh, R.L., Maziasz, P.J., Kim,
I.S., Heatherly, L., Hoelzer, D.T., Hashimoto, N., Kenik, E.A. & Miyahara,
K. 2002. Tensile and creep properties of an oxide dispersion-strengthened
ferritic steel. Journal of Nuclear Materials 307-311: 773-777.
Li, Q., Parish, C.M., Powers,
K.A. & Miller, M.K. 2014. Helium solubility and bubble formation in a
nanostructured ferritic alloy. Journal of Nuclear Materials 445:
165-174.
McClintock, D.A., Sokolov, M.A.,
Hoelzer, D.T. & Nanstad, R.K. 2009. Mechanical properties of irradiated
ODS-EUROFER and nanocluster strengthened 14YWT. Journal of Nuclear Materials 392: 353-359.
Miao, P., Odette, G.R., Yamamoto,
T., Alinger, M. & Klingensmith, D. 2008. Thermal stability of
nano-structured ferritic alloy. Journal of Nuclear Materials 377: 59-64.
Miller, M.K. & Zhang, Y.
2011. Fabrication and characterization of APT specimens from high dose heavy
ion irradiated materials. Ultramicroscopy 111: 672-675.
Nuclear Energy Agency (NEA).
2014. Technology Roadmap Update for Generation IV Nuclear Energy Systems.
Generation IV International Forum (GIF).
Pei, H. 2013. On the
structure-property correlation and the evolution of nanofeatures in 12-13.5% Cr
oxide dispersion strengthened ferritic steels. PhD Thesis. Karlsruher Institute
for Technologies (Unpublished).
Saber, M., Xu, W., Li, L., Zhu,
Y., Koch, C.C. & Scattergood, R.O. 2014. Size effect of primary Y2O3 additions on the characteristics of the nanostructured ferritic ODS alloys:
Comparing as- milled and as-milled/annealed alloys using S/TEM. Journal of
Nuclear Materials 452: 223-229.
Susila, P., Sturm, D., Heilmaier,
M., Murty, B.S. & Sarma, V.S. 2011. Effect of yttria particle size on the
microstructure and compression creep properties of nanostructured oxide
dispersion strengthened ferritic (Fe-12Cr-2W-0.5Y2O3)
alloy. Journal of Materials Science and Engineering A 528: 4579-4584.
Ukai, S., Harada, M., Okada, H.,
Inoue, M., Nomura, S., Shikakura, S., Asabe, K., Nishida, T. & Fujiwara, M.
1993. Alloying design of oxide dispersion strengthened ferritic steel for long
life FBRs core materials. Journal of Nuclear Materials 204: 65-73.
Ukai, S., Okuda, T., Fujiwara,
M., Kobayashi, T., Mizuta, S. & Nakashima, H. 2002. Characterization of
high temperature creep properties in recrystallized 12Cr-ODS ferritic steel
claddings. Journal of Nuclear Engineering and Technology 39: 872-879.
Williams, C.A., Unifantowicz, P.,
Baluc, N., Smith, G.D.W. & Marquis, E.A. 2013. The formation and evolution
of oxide particles in oxide-dispersion-strengthened ferritic steels during
processing. Acta Materialia 61: 2219-2235.
Zakine, C., Prioul, C. &
Francois, D. 1996. Creep behaviour of ODS steels. Journal of Materials
Science and Engineering A 219(1-2): 102-108.
*Corresponding author; email: farha90mizana@gmail.com