Sains Malaysiana 47(1)(2018): 207–214

http://dx.doi.org/10.17576/jsm-2018-4701-24

 

Catalytic Performance of Cu/ZnO/Al2O3/ZrO2 for Slurry Methanol Synthesis from CO2 Hydrogenation: Effect of Cu/Zn Molar Ratio

(Prestasi Pemangkinan Cu/ZnO/Al2O4/ ZrO2 untuk Sintesis Metanol Sluri daripada Penghidrogenan CO2: Kesan Nisbah Molar Cu/Zn)

 

SALINA SHAHARUN, MAIZATUL S. SHAHARUN*, MOHAMAD F.M. SHAH & NURUL A. AMER

 

Universiti Teknologi PETRONAS 32610 Seri Iskandar, Perak, Darul Ridzuan Malaysia

 

Received: 6 January 2016/Accepted: 22 June 2017

 

ABSTRACT

Catalytic hydrogenation of carbon dioxide (CO2) to methanol is an attractive way to recycle and utilize CO2. A series of Cu/ZnO/Al2O3/ZrO2 catalysts (CZAZ) containing different molar ratios of Cu/Zn were prepared by the co-precipitation method. The catalysts were characterized by temperature-programmed reduction (TPR), field emission scanning electron microscopy-energy dispersive x-ray analysis (FESEM-EDX) and X-ray diffraction (XRD). Higher surface area, SABET values (42.6-59.9 m2/g) were recorded at low (1) and high (5) Cu/Zn ratios with the minimum value of 35.71 m2/g was found for a Cu/Zn of 3. The reducibility of the metal oxides formed after calcination of catalyst samples was also affected due to change in metal-support interaction. At a reaction temperature of 443 K, total gas pressure of 3.0 MPa and 0.1 g/mL of the CZAZ catalyst, the selectivity to methanol decreased as the Cu/Zn molar ratio increased, and the maximum selectivity of 93.9 was achieved at Cu/Zn molar ratio of 0.33. With a reaction time of 3h, the best performing catalyst was CZAZ75 with Cu/Zn molar ratio of 5 giving methanol yield of 6.4%.

 

Keywords: Carbon dioxide; copper; hydrogenation; methanol synthesis; zinc; zirconia

 

ABSTRAK

Penghidrogenan pemangkin karbon dioksida (CO2) kepada metanol adalah satu cara yang menarik untuk mengitar semula penggunaan CO2. Satu siri pemangkin Cu/ZnO/Al2O3/ZrO2 (CZAZ) yang mengandungi nisbah molar Cu/Zn yang berbeza disediakan melalui kaedah pemendakan bersama. Kaedah pencirian yang dijalankan untuk pemangkin adalah melalui kaedah program penurunan suhu berkala (TPR), analisis pengimbas mikroskop pemancaran medan-serakan tenaga sinar-x (FESEM-EDX) dan pembelauan sinar-X (XRD). Luas permukaan tertinggi telah direkodkan iaitu (42.6-59.9 m2/g) pada nisbah Cu/Zn rendah (1) dan tinggi (5) dengan nilai minimum 35.71 m2/g pada nisbah Cu/Zn adalah 3. Kebolehpenurunan oksida logam yang terbentuk selepas sampel pemangkin dikalsinasi juga memberi kesan yang disebabkan oleh penukaran interaksi logam sokongan. Pada suhu tindak balas 443 K, jumlah tekanan gas 3.0M MPa dan 0.1 g/mL pemangkin CZAZ, pemilihan terhadap metanol berkurangan dengan peningkatan nisbah molar Cu/Zn, dan nilai pemilihan maksimum adalah 93.9 terhasil pada nisbah molar 0.33. Dengan masa tindak balas 3 jam, pemangkin dengan prestasi terbaik adalah CZAZ75 dengan nisbah molar 5 memberi hasil metanol 6.4%.

 

Kata kunci: Karbon dioksida; penghidrogenan; sintesis metanol; tembaga; zink; zirconia

REFERENCES

An, X., Li, J., Zuo, Y., Zhang, Q., Wang, D. & Wang, J. 2007. A Cu/Zn/Al/Zr fibrous catalyst that is an improved CO2 hydrogenation to methanol catalyst. Catalysis Letter 118: 264-269.

Arena, F., Italiano, G., Barbera, K., Bordiga, S., Bonura, G., Spadaro, L. & Frusteri, F. 2008. Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH. Applied Catalysis A 350: 16-23.

Arena, F., Italiano, G., Barbera, K., Bordiga, S., Bonura, G., Spadaro, L. & Frusteri, F. 2007. Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol. Journal of Catalysis 249: 185-194.

Bangbai, C., Chongsri, K., Pecharapa, W. & Techitdheera, W. 2013. Effect of Al and N Doping on structural and optical properties of sol-gel derived ZnO thin films. Sains Malaysiana42(2): 239-246.

Cai, L.N., Guo, Y., Lua, A.H., Branton, P. & Li, W.C. 2012. The choice of precipitant and precursor in the co-precipitation synthesis of copper manganese oxide for maximizing carbon monoxide oxidation. Journal of Molecular Catalysis A: Chemical 360: 35-41.

da Silva, R.J., Pimentel, A.F., Monteiro, R.S. & Motaa, C.J.A. 2016. Synthesis of methanol and dimethyl ether from the CO2 hydrogenation over Cu×ZnO supported on Al2O3 and Nb2O5. Journal of CO2 Utilization 15: 83-88.

Graaf, G.H. & Beenackers, A.A.C.M. 1996. Comparison of two-phase and three-phase methanol synthesis processes. Chemical Engineering and Processing 35: 413-427.

Guo, X., Mao, D., Lu, G., Wang, S. & Wu, G. 2011. The influence of La doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation. Journal of Molecular Catalysis A: Chemical 345: 60-68.

Li, W., Li, Y., Fan, G., Yang, L. & Li, F. 2017. Role of surface cooperative effect in copper catalysts toward highly selective synthesis of valeric biofuels. ACS Sustainable Chemistry & Engineering 5: 2282-2291.

Lin, Y.K., Su, Y.H., Huang, Y.H., Hsu, C.J., Hsu, Y.K., Lin, Y.G., Huang, K.H., Chen, S.Y, Chen, K.H. & Chen, L.C. 2009. Efficient hydrogen production using Cu-based catalysts prepared via homogeneous precipitation. Journal of Materials Chemistry 19: 9186-9194.

Melián-Cabrera, I., López Granados, M. & Fierro, J.L.G. 2002. Pd-Modified Cu-Zn catalysts for methanol synthesis from CO2/H2 mixtures: Catalytic structures and performance. Journal of Catalysis 210(2): 285-294.

Pung, S.Y., Ong, C.S., Mohd Isha, K. & Othman, M.H. 2014. Synthesis and characterization of Cu-doped ZnO nanorods. Sains Malaysiana43(2): 273-281.

Raudaskoski, R., Niemela, M.V. & Keiski, R.L. 2007. The effect of ageing time on co-precipitated Cu/ZnO/ZrO2 catalysts used in methanol synthesis from CO2 and H2. Topics in Catalysis 45(1): 57-60.

Samson, K., Liwa, M.Ś., Socha, R.P., Gora-Marek, K., Mucha, D., Rutkowska-Zbik, D., Paul, J-F., Ruggiero-Mikołajczyk, M., Grabowski, R. & Słoczynski ́, J. 2014. Influence of ZrO2 structure and copper electronic state on activity of Cu/ZrO2 catalysts in methanol synthesis from CO2. ACS Catalysis 4: 3730-3741.

Shaharun, M.S., Shaharun, S., Zabidi, N.A.M. & Taha, M.F. 2012. Effect of zirconia on the physicochemical properties of Cu/ZnO/Al2O3 catalyst. AIP Proceeding 1482: 117-121.

Sherwin, M.B. & Frank, M.E. 1976. Make methanol by three phase reaction. Hydrocarbon Process 55: 122-124.

Sloczynski, J., Grabowski, R., Kozlowska, A., Olszewski, P., Stoch, J., Skrzypek, J. & Lachowska, M. 2004. Catalytic activity of the M/(3ZnO•ZrO2) system (M = Cu, Ag, Au) in the hydrogenation of CO2 to methanol. Applied Catalysis A 278: 11-23.

Speight, J.G. 2002. Chemical and Process Design Handbook. New York: McGraw-Hill Inc. pp. 2.322-2.323.

Ud Din, I., Shaharun, M.S., Subbarao, D., Naeem, A. & Hussain, F. 2016. Influence of niobium on carbon nanofibres based Cu/ZrO2 catalysts for liquid phase hydrogenation of CO2 to methanol. Catalysis Today 259: 303-311.

Ud Din, I., Shaharun, M.S., Subbarao, D. & Naeem, A. 2014. Homogeneous deposition precipitation method for synthesis of carbon nanofibre based Cu-ZrO2 catalyst for hydrogenation of CO2 to methanol. Applied Mechanics and Materials 446: 83-87.

Velu, S. & Suzuki, K. 2003. Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl oxide catalysts: Effect of substitution of zirconium and cerium on the catalytic performance. Topics in Catalysis 22: 235-244.

Witoon, T., Chalorngtham, J., Dumrongbunditkul, P., Chareonpanich, M. & Limtrakul, J. 2016. CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: Effects of zirconia phases. Chemical Engineering Journal 293: 327-336.

Xiao, J., Mao, D., Guo, X., Yu, J. 2015. Effect of TiO2, ZrO2, and TiO2-ZrO2 on the performance of CuOZnO catalyst for CO2 hydrogenation to methanol. Applied Surface Science 338: 146-153.

Xiao, K., Wang, Q. & Qi, X. 2017. For better industrial Cu/ ZnO/Al2O3 methanol synthesis catalyst: A compositional study. Catalysis Letter 147: 1581-1591.

Xu, B., Yang, R., Meng, F., Reubroycharoen, P., Vitidsant, T., Zhang, Y., Yoneyama, Y. & Tsubaki, N. 2009. A new method of low temperature methanol synthesis. Catalysis Survey from Asia 13: 147-163.

Zhang, Y., Zhong, L., Wang, H., Gaob, P., Lib, X., Xiao, S., Dinga, G., Wei, W. & Sun, Y. 2016. Catalytic performance of spray-dried Cu/ZnO/Al2O3/ZrO2 catalysts for slurry methanol synthesis from CO2 hydrogenation Journal of CO2 Utilization 15: 72-82.

Zhang, Y., Fei, J., Yu, Y. & Zheng, X. 2006. Methanol synthesis from CO2 hydrogenation over Cu based catalyst supported on zirconia modified γ-Al2O3. Energy Conversion Management 47: 3360-3367.

 

 

*Corresponding author; email: maizats@utp.edu.my

 

 

 

 

previous