Sains Malaysiana 47(1)(2018): 207–214
http://dx.doi.org/10.17576/jsm-2018-4701-24
Catalytic Performance of Cu/ZnO/Al2O3/ZrO2 for
Slurry Methanol Synthesis from CO2 Hydrogenation:
Effect of Cu/Zn Molar Ratio
(Prestasi Pemangkinan Cu/ZnO/Al2O4/
ZrO2 untuk Sintesis Metanol Sluri daripada Penghidrogenan CO2: Kesan Nisbah Molar Cu/Zn)
SALINA SHAHARUN, MAIZATUL S. SHAHARUN*, MOHAMAD F.M. SHAH
& NURUL A. AMER
Universiti Teknologi PETRONAS 32610 Seri Iskandar,
Perak, Darul Ridzuan Malaysia
Received: 6 January 2016/Accepted:
22 June 2017
ABSTRACT
Catalytic hydrogenation of
carbon dioxide (CO2) to methanol is an attractive
way to recycle and utilize CO2. A series of Cu/ZnO/Al2O3/ZrO2 catalysts
(CZAZ)
containing different molar ratios of Cu/Zn were prepared by the
co-precipitation method. The catalysts were characterized by
temperature-programmed reduction (TPR), field emission scanning
electron microscopy-energy dispersive x-ray analysis (FESEM-EDX)
and X-ray diffraction (XRD). Higher surface area, SABET values
(42.6-59.9 m2/g) were recorded at low (1)
and high (5) Cu/Zn ratios with the minimum value of 35.71 m2/g
was found for a Cu/Zn of 3. The reducibility of the metal oxides formed after
calcination of catalyst samples was also affected due to change in
metal-support interaction. At a reaction temperature of 443 K, total gas
pressure of 3.0 MPa and 0.1 g/mL of the CZAZ catalyst, the selectivity
to methanol decreased as the Cu/Zn molar ratio increased,
and the maximum selectivity of 93.9 was achieved at Cu/Zn molar
ratio of 0.33. With a reaction time of 3h, the best performing catalyst
was CZAZ75 with Cu/Zn molar ratio of 5 giving methanol yield
of 6.4%.
Keywords: Carbon dioxide;
copper; hydrogenation; methanol synthesis; zinc; zirconia
ABSTRAK
Penghidrogenan pemangkin karbon dioksida (CO2) kepada metanol adalah satu cara yang menarik untuk mengitar semula penggunaan CO2. Satu siri pemangkin Cu/ZnO/Al2O3/ZrO2 (CZAZ)
yang mengandungi nisbah molar
Cu/Zn yang berbeza disediakan melalui kaedah pemendakan bersama. Kaedah pencirian yang dijalankan untuk pemangkin adalah melalui kaedah program penurunan suhu berkala (TPR), analisis pengimbas mikroskop pemancaran medan-serakan tenaga sinar-x (FESEM-EDX) dan pembelauan sinar-X (XRD). Luas permukaan tertinggi telah direkodkan iaitu (42.6-59.9 m2/g) pada nisbah Cu/Zn rendah (1) dan tinggi (5) dengan nilai minimum 35.71 m2/g pada nisbah Cu/Zn adalah 3. Kebolehpenurunan oksida logam yang terbentuk selepas sampel pemangkin dikalsinasi juga memberi kesan yang disebabkan oleh penukaran interaksi logam sokongan. Pada suhu tindak balas 443 K, jumlah tekanan gas
3.0M MPa dan 0.1 g/mL pemangkin CZAZ, pemilihan terhadap metanol berkurangan dengan peningkatan nisbah molar Cu/Zn, dan nilai pemilihan maksimum adalah 93.9 terhasil pada nisbah molar 0.33. Dengan masa tindak balas 3 jam, pemangkin dengan prestasi terbaik adalah CZAZ75 dengan nisbah molar 5 memberi hasil metanol 6.4%.
Kata kunci: Karbon dioksida; penghidrogenan; sintesis metanol; tembaga; zink; zirconia
REFERENCES
An, X., Li, J., Zuo, Y., Zhang, Q.,
Wang, D. & Wang, J. 2007. A
Cu/Zn/Al/Zr fibrous catalyst that is an improved CO2 hydrogenation
to methanol catalyst. Catalysis Letter 118: 264-269.
Arena,
F., Italiano, G., Barbera,
K., Bordiga, S., Bonura,
G., Spadaro, L. & Frusteri,
F. 2008. Solid-state interactions, adsorption sites and
functionality of Cu-ZnO/ZrO2 catalysts
in the CO2 hydrogenation
to CH3OH. Applied Catalysis
A 350: 16-23.
Arena,
F., Italiano, G., Barbera,
K., Bordiga, S., Bonura,
G., Spadaro, L. & Frusteri,
F. 2007. Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalysts
in the hydrogenation of carbon dioxide to methanol. Journal of Catalysis 249:
185-194.
Bangbai,
C., Chongsri, K., Pecharapa,
W. & Techitdheera, W. 2013. Effect of Al and N Doping on structural and optical properties of
sol-gel derived ZnO thin films. Sains Malaysiana42(2):
239-246.
Cai,
L.N., Guo, Y., Lua, A.H., Branton, P. & Li, W.C. 2012. The
choice of precipitant and precursor in the co-precipitation synthesis of copper
manganese oxide for maximizing carbon monoxide oxidation. Journal of
Molecular Catalysis A: Chemical 360: 35-41.
da Silva, R.J.,
Pimentel, A.F., Monteiro, R.S. & Motaa, C.J.A.
2016. Synthesis of methanol and dimethyl ether from the CO2 hydrogenation
over Cu×ZnO supported on Al2O3 and
Nb2O5. Journal of CO2 Utilization 15: 83-88.
Graaf, G.H. & Beenackers, A.A.C.M. 1996. Comparison of two-phase and three-phase methanol synthesis processes. Chemical
Engineering and Processing 35: 413-427.
Guo, X., Mao, D., Lu, G., Wang, S. & Wu, G. 2011. The influence of La doping on the catalytic behavior of Cu/ZrO2 for
methanol synthesis from CO2 hydrogenation. Journal of Molecular Catalysis A: Chemical 345: 60-68.
Li, W., Li, Y., Fan, G., Yang, L. &
Li, F. 2017. Role of surface cooperative effect in copper
catalysts toward highly selective synthesis of valeric biofuels. ACS Sustainable Chemistry & Engineering 5:
2282-2291.
Lin, Y.K., Su, Y.H., Huang, Y.H., Hsu, C.J., Hsu, Y.K., Lin, Y.G.,
Huang, K.H., Chen, S.Y, Chen, K.H. & Chen, L.C. 2009. Efficient hydrogen
production using Cu-based catalysts prepared via homogeneous precipitation. Journal
of Materials Chemistry 19: 9186-9194.
Melián-Cabrera, I., López Granados, M. & Fierro, J.L.G. 2002. Pd-Modified
Cu-Zn catalysts for methanol synthesis from CO2/H2 mixtures: Catalytic structures and performance. Journal of Catalysis 210(2):
285-294.
Pung, S.Y., Ong,
C.S., Mohd Isha, K. & Othman, M.H. 2014. Synthesis and
characterization of Cu-doped ZnO nanorods. Sains Malaysiana43(2):
273-281.
Raudaskoski, R., Niemela,
M.V. & Keiski, R.L. 2007. The effect of ageing time on
co-precipitated Cu/ZnO/ZrO2 catalysts used
in methanol synthesis from CO2 and H2. Topics in
Catalysis 45(1): 57-60.
Samson, K., Liwa, M.Ś., Socha, R.P.,
Gora-Marek, K., Mucha, D., Rutkowska-Zbik,
D., Paul, J-F., Ruggiero-Mikołajczyk, M.,
Grabowski, R. & Słoczynski ́, J. 2014. Influence of ZrO2 structure and copper electronic state on activity of Cu/ZrO2 catalysts in methanol synthesis from CO2. ACS Catalysis 4:
3730-3741.
Shaharun, M.S., Shaharun,
S., Zabidi, N.A.M. & Taha,
M.F. 2012. Effect of zirconia on the physicochemical
properties of Cu/ZnO/Al2O3 catalyst. AIP Proceeding 1482: 117-121.
Sherwin, M.B.
& Frank, M.E. 1976. Make methanol by three phase reaction. Hydrocarbon Process 55: 122-124.
Sloczynski, J.,
Grabowski, R., Kozlowska, A., Olszewski,
P., Stoch, J., Skrzypek, J.
& Lachowska, M. 2004. Catalytic activity of the M/(3ZnO•ZrO2) system (M = Cu, Ag, Au)
in the hydrogenation of CO2 to methanol. Applied
Catalysis A 278: 11-23.
Speight, J.G.
2002. Chemical and Process Design Handbook. New
York: McGraw-Hill Inc. pp. 2.322-2.323.
Ud Din, I., Shaharun, M.S., Subbarao, D., Naeem, A. & Hussain, F. 2016. Influence of niobium on carbon nanofibres based Cu/ZrO2 catalysts for liquid
phase hydrogenation of CO2 to methanol. Catalysis
Today 259: 303-311.
Ud Din, I., Shaharun, M.S., Subbarao, D.
& Naeem, A. 2014. Homogeneous deposition
precipitation method for synthesis of carbon nanofibre based Cu-ZrO2 catalyst for hydrogenation of CO2 to
methanol. Applied Mechanics and Materials 446: 83-87.
Velu, S. &
Suzuki, K. 2003. Selective production of hydrogen for fuel cells via oxidative steam reforming
of methanol over CuZnAl oxide catalysts: Effect of
substitution of zirconium and cerium on the catalytic performance. Topics in
Catalysis 22: 235-244.
Witoon, T., Chalorngtham, J., Dumrongbunditkul,
P., Chareonpanich, M. & Limtrakul,
J. 2016. CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: Effects of
zirconia phases. Chemical Engineering Journal 293: 327-336.
Xiao, J., Mao, D., Guo, X., Yu, J. 2015. Effect of TiO2,
ZrO2, and TiO2-ZrO2 on the performance of CuO–ZnO catalyst for CO2 hydrogenation to methanol. Applied Surface Science 338:
146-153.
Xiao, K., Wang,
Q. & Qi, X. 2017. For better industrial Cu/ ZnO/Al2O3 methanol synthesis catalyst: A compositional study. Catalysis Letter 147:
1581-1591.
Xu, B., Yang,
R., Meng, F., Reubroycharoen,
P., Vitidsant, T., Zhang, Y., Yoneyama,
Y. & Tsubaki, N. 2009. A new method
of low temperature methanol synthesis. Catalysis Survey from Asia 13:
147-163.
Zhang, Y., Zhong, L., Wang, H., Gaob, P.,
Lib, X., Xiao, S., Dinga, G., Wei, W. & Sun, Y.
2016. Catalytic performance of spray-dried Cu/ZnO/Al2O3/ZrO2 catalysts for slurry methanol synthesis from CO2 hydrogenation Journal
of CO2 Utilization 15: 72-82.
Zhang, Y., Fei, J., Yu, Y. & Zheng, X. 2006. Methanol synthesis from CO2 hydrogenation over Cu based catalyst supported on zirconia modified γ-Al2O3. Energy Conversion Management 47: 3360-3367.
*Corresponding author; email: maizats@utp.edu.my
|