Sains Malaysiana 47(1)(2018): 195–205

http://dx.doi.org/10.17576/jsm-2018-4701-23

 

Effects of Nano-Carbon Reinforcement on the Swelling and Shrinkage Behaviour of Soil

(Kesan Pengukuhan Nanokarbon terhadap Sifat Pembengkakan dan Pengecutan Tanah)

 

MOHD RAIHAN TAHA1,2, JAMAL M.A. ALSHAREF1*, RAMEZ A. AL-MANSOB1 & TANVEER AHMED KHAN1

 

1Department of Civil and Structural Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 8 March 2017/Accepted: 21 June 2017

 

 

ABSTRACT

In this study, the performance of two types of nanocarbons (NCs), namely carbon nanotubes (CNTs) and carbon nanofibers (CNFs), on the three-dimensional shrinkage and swelling properties of three clayey soils were investigated. The specimens of soil mixed with clay with bentonite contents of 0, 10 and 20% by weight of dry soil. NC contents of 0.05, 0.075, 0.10 and 0.20% were chosen to investigate the influence of different NC types, CNTs and CNFs. All soil specimens were compacted under maximum dry unit weight and optimum water content conditions by using standard compaction tests. The physical and mechanical characteristics of the reinforced samples were then determined. These included the desiccation cracking area, used to determine the crack intensity factor (CIF), as well as the shrinkage and swelling. The CIF for the soil specimens without NCs were higher than the soil specimens with NC additives. These results show that NCs decrease the development of desiccation cracks on the surface of compacted samples. The shrinkage and swelling tests showed that the rate of volume changing of the compacted soil specimens reduced with the increasing of NCs.

 

Keywords: Compaction; desiccation cracks; nano-fiber reinforcement; volume change

 

ABSTRAK

Dalam kajian ini, prestasi dua jenis nanokarbon (NC), iaitu tiub nano karbon (CNT) dan serat nano karbon (CNF) terhadap sifat pengecutan tiga dimensi dan sifat pembengkakan tiga jenis lempung dikaji. Spesimen tanah dicampur dengan lempung pada kandungan bentonit 0, 10 dan 20% daripada berat tanah kering. Kandungan NC sebanyak 0.05, 0.075, 0.10 dan 0.20% dipilih untuk mengkaji pengaruh jenis NC yang berbeza iaitu CNT dan CNF. Semua spesimen tanah dipadatkan di bawah unit berat kering maksimum dan keadaan kandungan air yang optimum dengan menggunakan ujian pemadatan piawai. Ciri fizikal dan mekanik sampel tersebut ditentukan. Ini termasuk kawasan retak pengeringan yang digunakan untuk menentukan faktor keamatan retakan (CIF) serta pengecutan dan pembengkakan. CIF untuk spesimen tanah tanpa NC adalah lebih tinggi daripada spesimen tanah dengan bahan tambah NC. Keputusan ini menunjukkan bahawa NC mengurangkan pembentukan kesan retak pengeringan pada permukaan sampel yang dipadatkan. Ujian pengecutan dan pembengkakan menunjukkan bahawa perubahan kadar isi padu pada spesimen tanah yang dipadatkan dikurangkan dengan peningkatan NC.

 

Kata kunci: Pemadatan; pengukuhan nano-fiber; perubahan isi padu; retak pengeringan

 

REFERENCES

Al-Mansob, R.A., Ismail, A., Rahmat, R.a.O., Borhan, M.N., Alsharef, J.M., Albrka, S.I. & Karim, M.R. 2017. The performance of epoxidised natural rubber modified asphalt using nano-alumina as additive. Construction and Building Materials 155: 680-687.

Al-Rub, R.K.A., Tyson, B.M., Yazdanbakhsh, A. & Grasley, Z. 2011. Mechanical properties of nanocomposite cement incorporating surface-treated and untreated carbon nanotubes and carbon nanofibers. Journal of Nanomechanics and Micromechanics 2(1).

Albrecht, B.A. & Benson, C.H. 2001. Effect of desiccation on compacted natural clays. Journal of Geotechnical and Geoenvironmental Engineering 127(1): 67-75.

Alsharef, J.M., Taha, M.R., Al-Mansob, R.A. & Khan, T.A. 2017a. Influence of carbon nanofibers on the shear strength and comparing cohesion of direct shear test and AFM. Journal of Nano Research 49: 108-126.

Alsharef, J.M., Taha, M.R. & Khan, T.A. 2017b. Physical dispersion of nanocarbons in composites - A review. Jurnal Teknologi 79(5): 69-81.

Alsharef, J., Taha, M.R., Firoozi, A.A. & Govindasamy, P. 2016. Potential of using nanocarbons to stabilize weak soils. Applied and Environmental Soil Science 2016: Article ID 5060531.

Blandine, F., Habermehi-Cwirzen, K. & Cwirzen, A. 2016. Contribution of Cnts/Cnfs morphology to reduction of autogenous shrinkage of Portland cement paste. Frontiers of Structural and Civil Engineering 10(2): 224-235.

Cai, Y., Shi, B., Ng, C.W.W. & Tang, C.S. 2006. Effect of polypropylene fibre and lime admixture on engineering properties of clayey soil. Engineering Geology 87(3-4): 230-240.

Chen, F.H. 1975. Foundations on Expansive Soils. Volume 12 of Development in Geotechnical Engineering. New York: Elsevier Scientific Publication Co.

Cui, L. 2013. Incorporation of multiwalled carbon nanotubes to ordinary Portland cement (OPC): Effects on mechanical properties. Advanced Materials Research 641-642: 436-439.

Diambra, A., Ibraim, E., Wood, D.M. & Russell, A. 2010. Fibre reinforced sands: Experiments and modelling. Geotextiles and Geomembranes 28(3): 238-250.

Etter, B., Tilley, E., Khadka, R. & Udert, K. 2011. Low-cost struvite production using source-separated urine in Nepal. Water Research 45(2): 852-862.

Fatahi, B., Khabbaz, H. & Fatahi, B. 2012. Mechanical characteristics of soft clay treated with fibre and cement. Geosynthetics International 19(3): 252-262.

Ferkel, H. & Hellmig, R. 1999. Effect of nanopowder deagglomeration on the densities of nanocrystalline ceramic green bodies and their sintering behaviour. Nanostructured Materials 11(5): 617-622.

Firoozi, A.A., Taha, M.R., Firoozi, A.A. & Khan, T.A. 2015. Effect of ultrasonic treatment on clay microfabric evaluation by atomic force microscopy. Measurement 66: 244-252.

Govindasamy, P., Taha, M.R., Alsharef, J. & Ramalingam, K. 2017. Influence of nanolime and curing period on unconfined compressive strength of soil. Applied and Environmental Soil Science 2017: Article ID 8307493.

Harianto, T., Hayashi, S., Du, Y.J. & Suetsugu, D. 2008. Effects of fiber additives on the desiccation crack behavior of the compacted akaboku soil as a material for landfill cover barrier. Water, Air, and Soil Pollution 194(1-4): 141-149.

Hataf, N. & Rahimi, M. 2006. Experimental investigation of bearing capacity of sand reinforced with randomly distributed tire shreds. Construction and Building Materials 20(10): 910-916.

Hejazi, S.M., Sheikhzadeh, M., Abtahi, S.M. & Zadhoush, A. 2012. A simple review of soil reinforcement by using natural and synthetic fibers. Construction and Building Materials 30: 100-116.

Houston, S.L., Dye, H.B., Zapata, C.E., Walsh, K.D. & Houston, W.N. 2009. Study of expansive soils and residential foundations on expansive soils in Arizona. Journal of Performance of Constructed Facilities 25(1): 31-44.

Ige, O.O. 2009. Assessment of geotechnical properties of migmatite-derived residual soil from Ilorin, Southwestern Nigeria, as barrier in sanitary landfill. Continental Journal of Earth Sciences 4: 23-33.

Kleppe, J.H. & Olson, R.E. 1985. Desiccation cracking of soil barriers. In Hydraulic Barriers in Soil and Rock: A Symposium edited by Johnson, A.I., ASTM Committee D-18 on Soil and Rock (USA); United States Committee on Large Dams. Italy: ASTM International.

Kumar, A., Walia, B.S. & Mohan, J. 2006. Compressive strength of fiber reinforced highly compressible clay. Construction and Building Materials 20(10): 1063-1068.

Lee, J., Kim, M., Hong, C.K. & Shim, S.E. 2007. Measurement of the dispersion stability of pristine and surface-modified multiwalled carbon nanotubes in various nonpolar and polar solvents. Measurement Science and Technology 18(12): 3707-3712.

Leroueil, S. & Hight, D. 2015. Compacted soils: From physics to hydraulic and mechanical behaviour. Proceedings of the 1st Pan-American Conference on Unsaturated Soils (PanAmUNSAT’13). hlm. 41-59.

Li, G.Y., Wang, P.M. & Zhao, X. 2007. Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cement and Concrete Composites 29(5): 377-382.

Mangat, P., Motamedi-Azari, M. & Ramat, B.S. 1984. Steel fibre-cement matrix interfacial bond characteristics under flexure. International Journal of Cement Composites and Lightweight Concrete 6(1): 29-37.

Michalowski, R.L. & C̆Ermák, J. 2002. Strength anisotropy of fiber-reinforced sand. Computers and Geotechnics 29(4): 279-299.

Mirzababaei, M., Miraftab, M., Mohamed, M. & Mcmahon, P. 2013. Impact of carpet waste fibre addition on swelling properties of compacted clays. Geotechnical and Geological Engineering 31(1): 173-182.

Moore, V.C., Strano, M.S., Haroz, E.H., Hauge, R.H., Smalley, R.E., Schmidt, J. & Talmon, Y. 2003. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Letters 3(10): 1379-1382.

Nahlawi, H. & Kodikara, J. 2006. Laboratory experiments on desiccation cracking of thin soil layers. Geotechnical & Geological Engineering 24(6): 1641-1664.

Nochaiya, T. & Chaipanich, A. 2011. Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials. Applied Surface Science 257(6): 1941-1945.

Omidi, G., Prasad, T., Thomas, J. & Brown, K. 1996a. The Influence of amendments on the volumetric shrinkage and integrity of compacted clay soils used in landfill liners. Water, Air, and Soil Pollution 86(1-4): 263-274.

Omidi, G., Thomas, J. & Brown, K. 1996b. Effect of desiccation cracking on the hydraulic conductivity of a compacted clay liner. Water, Air, and Soil Pollution 89(1-2): 91-103.

Park, T. & Tan, S.A. 2005. Enhanced performance of reinforced soil walls by the inclusion of short fiber. Geotextiles and Geomembranes 23(4): 348-361.

Peng, X., Horn, R., Peth, S. & Smucker, A. 2006. Quantification of soil shrinkage in 2D by digital image processing of soil surface. Soil and Tillage Research 91(1): 173-180.

Plé, O. & Lê, T. 2012. Effect of polypropylene fiber-reinforcement on the mechanical behavior of silty clay. Geotextiles and Geomembranes 32: 111-116.

Saran, S. 2010. Reinforced Soil and Its Engineering Applications. IK International Pvt Ltd.

Siddique, R. & Mehta, A. 2014. Effect of carbon nanotubes on properties of cement mortars. Construction and Building Materials 50: 116-129.

Taha, M.R. & Alsharef, J.M.A. 2017. Use of nanocarbons to control wwelling, shrinkage, and hydraulic conductivity of a residual soil. Proceedings of the 2nd Symposium on Coupled Phenomena in Environmental Geotechnics (CPEG2), Leeds, UK 2017.

Taha, M.R., Ismail, E., Chik, Z., De Miguel, Y., Porro, A. & Bartos, P. 2005. Some nano aspects and concepts in geotechnology. 2nd Int. Symp. on Nanotechnology in Construction, Bilbao, Spain. hlm. 373-381.

Tang, C., Shi, B., Gao, W., Chen, F. & Cai, Y. 2007. Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotextiles and Geomembranes 25(3): 194-202.

Tyson, B.M., Abu Al-Rub, R.K., Yazdanbakhsh, A. & Grasley, Z. 2011. Carbon nanotubes and carbon nanofibers for enhancing the mechanical properties of nanocomposite cementitious materials. Journal of Materials in Civil Engineering 23(7): 1028-1035.

Vaisman, L., Marom, G. & Wagner, H.D. 2006. Dispersions of surface-modified carbon nanotubes in water-soluble and water-insoluble polymers. Advanced Functional Materials 16(3): 357-363.

Wang, C., Li, K.Z., Li, H.J., Jiao, G.S., Lu, J. & Hou, D.S. 2008. Effect of carbon fiber dispersion on the mechanical properties of carbon fiber-reinforced cement-based composites. Materials Science and Engineering: A 487(1): 52-57.

Witt, K. & Zeh, R. 2005. Cracks due to desiccation in cover lining systems phenomena and design strategy. International Workshop LIRIGM, Grenoble University, France.

Yazdanbakhsh, A., Grasley, Z., Tyson, B. & Abu Al-Rub, R. 2010. Distribution of carbon nanofibers and nanotubes in cementitious composites. Transportation Research Record: Journal of the Transportation Research Board 2142: 89-95.

Yazdanbakhsh, A., Grasley, Z., Tyson, B. & Al-Rub, R.A. 2009. Carbon nano filaments in cementitious materials: Some issues on dispersion and interfacial bond. ACI Special Publication 267: 21-34.

Yetimoglu, T., Inanir, M. & Esatinanir, O. 2005. A study on bearing capacity of randomly distributed fiber-reinforced sand fills overlying soft clay. Geotextiles and Geomembranes 23(2): 174-183.

 

*Corresponding author; email: jamalshref@yahoo.com

 

 

 

previous