Sains Malaysiana 47(1)(2018): 195–205
http://dx.doi.org/10.17576/jsm-2018-4701-23
Effects of Nano-Carbon Reinforcement on
the Swelling and Shrinkage Behaviour of Soil
(Kesan Pengukuhan Nanokarbon terhadap Sifat Pembengkakan dan Pengecutan Tanah)
MOHD RAIHAN TAHA1,2, JAMAL M.A. ALSHAREF1*, RAMEZ A. AL-MANSOB1 & TANVEER AHMED KHAN1
1Department of Civil and
Structural Engineering, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Institute for Environment and
Development (LESTARI), Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 8 March 2017/Accepted:
21 June 2017
ABSTRACT
In this study, the
performance of two types of nanocarbons (NCs),
namely carbon nanotubes (CNTs) and carbon nanofibers (CNFs),
on the three-dimensional shrinkage and swelling properties of three clayey
soils were investigated. The specimens of soil mixed with clay with bentonite
contents of 0, 10 and 20% by weight of dry soil. NC contents
of 0.05, 0.075, 0.10 and 0.20% were chosen to investigate the influence of
different NC types, CNTs and CNFs.
All soil specimens were compacted under maximum dry unit weight and optimum
water content conditions by using standard compaction tests. The physical and
mechanical characteristics of the reinforced samples were then determined.
These included the desiccation cracking area, used to determine the crack
intensity factor (CIF), as well as the shrinkage and
swelling. The CIF for the soil specimens without NCs
were higher than the soil specimens with NC additives. These results
show that NCs decrease the development of desiccation cracks on the
surface of compacted samples. The shrinkage and swelling tests showed that the
rate of volume changing of the compacted soil specimens reduced with the
increasing of NCs.
Keywords: Compaction;
desiccation cracks; nano-fiber reinforcement; volume
change
ABSTRAK
Dalam kajian ini, prestasi dua jenis nanokarbon (NC), iaitu tiub nano karbon (CNT) dan serat nano karbon (CNF) terhadap sifat pengecutan tiga dimensi dan sifat pembengkakan tiga jenis lempung dikaji. Spesimen tanah dicampur dengan lempung pada kandungan bentonit 0, 10 dan 20% daripada berat tanah kering. Kandungan NC sebanyak 0.05, 0.075, 0.10 dan 0.20% dipilih untuk mengkaji pengaruh jenis NC yang berbeza iaitu CNT dan CNF. Semua spesimen tanah dipadatkan di bawah unit berat kering maksimum dan keadaan kandungan air yang optimum dengan menggunakan ujian pemadatan piawai. Ciri fizikal dan mekanik sampel tersebut ditentukan. Ini termasuk kawasan retak pengeringan yang digunakan untuk menentukan faktor keamatan retakan (CIF) serta pengecutan dan pembengkakan. CIF untuk spesimen tanah tanpa NC adalah lebih tinggi daripada spesimen tanah dengan bahan tambah NC. Keputusan ini menunjukkan bahawa NC mengurangkan pembentukan kesan retak pengeringan pada permukaan sampel yang dipadatkan. Ujian pengecutan dan pembengkakan menunjukkan bahawa perubahan kadar isi padu pada spesimen tanah yang dipadatkan dikurangkan dengan peningkatan NC.
Kata kunci: Pemadatan; pengukuhan nano-fiber; perubahan isi padu; retak pengeringan
REFERENCES
Al-Mansob, R.A., Ismail, A., Rahmat, R.a.O.,
Borhan, M.N., Alsharef, J.M., Albrka, S.I. & Karim, M.R. 2017.
The performance of epoxidised natural rubber modified asphalt using
nano-alumina as additive. Construction and Building Materials
155: 680-687.
Al-Rub, R.K.A., Tyson, B.M., Yazdanbakhsh, A. &
Grasley, Z. 2011. Mechanical properties of nanocomposite cement
incorporating surface-treated and untreated carbon nanotubes and
carbon nanofibers. Journal of Nanomechanics and Micromechanics
2(1).
Albrecht, B.A. & Benson, C.H. 2001. Effect
of desiccation on compacted natural clays. Journal of Geotechnical
and Geoenvironmental Engineering 127(1): 67-75.
Alsharef, J.M., Taha, M.R., Al-Mansob, R.A.
& Khan, T.A. 2017a. Influence of carbon nanofibers on the shear
strength and comparing cohesion of direct shear test and AFM. Journal
of Nano Research 49: 108-126.
Alsharef, J.M., Taha, M.R. & Khan, T.A.
2017b. Physical dispersion of nanocarbons in composites - A review.
Jurnal Teknologi 79(5): 69-81.
Alsharef, J., Taha, M.R., Firoozi, A.A. & Govindasamy,
P. 2016. Potential of using nanocarbons to stabilize weak soils.
Applied and Environmental Soil Science 2016: Article ID
5060531.
Blandine, F., Habermehi-Cwirzen, K. & Cwirzen,
A. 2016. Contribution of Cnts/Cnfs morphology to reduction of autogenous
shrinkage of Portland cement paste. Frontiers of Structural and
Civil Engineering 10(2): 224-235.
Cai, Y., Shi, B., Ng, C.W.W. & Tang, C.S. 2006. Effect of polypropylene
fibre and lime admixture on engineering properties of clayey soil.
Engineering Geology 87(3-4): 230-240.
Chen, F.H. 1975. Foundations
on Expansive Soils. Volume 12 of Development in Geotechnical
Engineering. New York: Elsevier Scientific Publication Co.
Cui, L. 2013. Incorporation of multiwalled carbon nanotubes
to ordinary Portland cement (OPC): Effects on mechanical properties.
Advanced Materials Research 641-642: 436-439.
Diambra, A., Ibraim, E., Wood, D.M. & Russell, A. 2010.
Fibre reinforced sands: Experiments and modelling. Geotextiles
and Geomembranes 28(3): 238-250.
Etter, B., Tilley, E., Khadka, R. & Udert, K. 2011. Low-cost
struvite production using source-separated urine in Nepal. Water
Research 45(2): 852-862.
Fatahi, B., Khabbaz, H. & Fatahi, B. 2012. Mechanical characteristics
of soft clay treated with fibre and cement. Geosynthetics International
19(3): 252-262.
Ferkel, H. & Hellmig, R. 1999. Effect of nanopowder deagglomeration
on the densities of nanocrystalline ceramic green bodies and their
sintering behaviour. Nanostructured Materials 11(5): 617-622.
Firoozi, A.A., Taha, M.R., Firoozi, A.A. & Khan, T.A. 2015.
Effect of ultrasonic treatment on clay microfabric evaluation by
atomic force microscopy. Measurement 66: 244-252.
Govindasamy, P., Taha, M.R., Alsharef, J. & Ramalingam,
K. 2017. Influence of nanolime and curing period on unconfined compressive
strength of soil. Applied and Environmental Soil Science
2017: Article ID 8307493.
Harianto, T., Hayashi, S., Du, Y.J. & Suetsugu, D. 2008.
Effects of fiber additives on the desiccation crack behavior of
the compacted akaboku soil as a material for landfill cover barrier.
Water, Air, and Soil Pollution 194(1-4): 141-149.
Hataf, N. & Rahimi, M. 2006. Experimental investigation
of bearing capacity of sand reinforced with randomly distributed
tire shreds. Construction and Building Materials 20(10):
910-916.
Hejazi, S.M., Sheikhzadeh, M., Abtahi, S.M. & Zadhoush,
A. 2012. A simple review of soil reinforcement by using natural
and synthetic fibers. Construction and Building Materials 30:
100-116.
Houston, S.L., Dye, H.B., Zapata, C.E., Walsh, K.D. & Houston,
W.N. 2009. Study of expansive soils and residential foundations
on expansive soils in Arizona. Journal of Performance of Constructed
Facilities 25(1): 31-44.
Ige, O.O. 2009. Assessment of geotechnical properties of migmatite-derived
residual soil from Ilorin, Southwestern Nigeria, as barrier in sanitary
landfill. Continental Journal of Earth Sciences 4: 23-33.
Kleppe, J.H. & Olson, R.E. 1985. Desiccation cracking of
soil barriers. In Hydraulic Barriers in Soil and Rock: A Symposium
edited by Johnson, A.I., ASTM Committee D-18 on Soil and
Rock (USA); United States Committee on Large Dams. Italy: ASTM
International.
Kumar, A., Walia, B.S. & Mohan, J. 2006. Compressive strength
of fiber reinforced highly compressible clay. Construction and
Building Materials 20(10): 1063-1068.
Lee, J., Kim, M., Hong, C.K. & Shim, S.E. 2007. Measurement
of the dispersion stability of pristine and surface-modified multiwalled
carbon nanotubes in various nonpolar and polar solvents. Measurement
Science and Technology 18(12): 3707-3712.
Leroueil, S. & Hight, D. 2015. Compacted soils: From physics
to hydraulic and mechanical behaviour. Proceedings of the 1st
Pan-American Conference on Unsaturated Soils (PanAmUNSAT’13).
hlm. 41-59.
Li, G.Y., Wang, P.M. & Zhao, X. 2007. Pressure-sensitive
properties and microstructure of carbon nanotube reinforced cement
composites. Cement and Concrete Composites 29(5): 377-382.
Mangat, P., Motamedi-Azari, M. & Ramat, B.S. 1984. Steel
fibre-cement matrix interfacial bond characteristics under flexure.
International Journal of Cement Composites and Lightweight Concrete
6(1): 29-37.
Michalowski, R.L. & C̆Ermák, J. 2002. Strength
anisotropy of fiber-reinforced sand. Computers and Geotechnics
29(4): 279-299.
Mirzababaei, M., Miraftab, M., Mohamed, M. & Mcmahon, P.
2013. Impact of carpet waste fibre addition on swelling properties
of compacted clays. Geotechnical and Geological Engineering 31(1):
173-182.
Moore, V.C., Strano, M.S., Haroz, E.H., Hauge, R.H., Smalley,
R.E., Schmidt, J. & Talmon, Y. 2003. Individually suspended
single-walled carbon nanotubes in various surfactants. Nano Letters
3(10): 1379-1382.
Nahlawi, H. & Kodikara, J. 2006. Laboratory experiments
on desiccation cracking of thin soil layers. Geotechnical &
Geological Engineering 24(6): 1641-1664.
Nochaiya, T. & Chaipanich, A. 2011. Behavior of multi-walled
carbon nanotubes on the porosity and microstructure of cement-based
materials. Applied Surface Science 257(6): 1941-1945.
Omidi, G., Prasad, T., Thomas, J. & Brown, K. 1996a. The
Influence of amendments on the volumetric shrinkage and integrity
of compacted clay soils used in landfill liners. Water, Air,
and Soil Pollution 86(1-4): 263-274.
Omidi, G., Thomas, J. & Brown, K. 1996b. Effect of desiccation
cracking on the hydraulic conductivity of a compacted clay liner.
Water, Air, and Soil Pollution 89(1-2): 91-103.
Park, T. & Tan, S.A. 2005. Enhanced performance of reinforced
soil walls by the inclusion of short fiber. Geotextiles and Geomembranes
23(4): 348-361.
Peng, X., Horn, R., Peth, S. & Smucker, A. 2006. Quantification
of soil shrinkage in 2D by digital image processing of soil surface.
Soil and Tillage Research 91(1): 173-180.
Plé, O. & Lê, T. 2012. Effect of polypropylene
fiber-reinforcement on the mechanical behavior of silty clay. Geotextiles
and Geomembranes 32: 111-116.
Saran, S. 2010. Reinforced Soil and Its Engineering Applications.
IK International Pvt Ltd.
Siddique, R. & Mehta, A. 2014. Effect of carbon nanotubes
on properties of cement mortars. Construction and Building Materials
50: 116-129.
Taha, M.R. & Alsharef, J.M.A. 2017. Use of nanocarbons
to control wwelling, shrinkage, and hydraulic conductivity of a
residual soil. Proceedings of the 2nd Symposium on Coupled Phenomena
in Environmental Geotechnics (CPEG2), Leeds, UK 2017.
Taha, M.R., Ismail,
E., Chik, Z., De Miguel, Y., Porro,
A. & Bartos, P. 2005. Some nano aspects and concepts in geotechnology. 2nd Int. Symp. on Nanotechnology in Construction, Bilbao, Spain. hlm. 373-381.
Tang, C., Shi,
B., Gao, W., Chen, F. & Cai,
Y. 2007. Strength and mechanical behavior of short polypropylene fiber
reinforced and cement stabilized clayey soil. Geotextiles and Geomembranes 25(3):
194-202.
Tyson,
B.M., Abu Al-Rub, R.K., Yazdanbakhsh, A. & Grasley, Z. 2011. Carbon nanotubes and
carbon nanofibers for enhancing the mechanical properties of nanocomposite
cementitious materials. Journal of Materials in Civil Engineering 23(7):
1028-1035.
Vaisman,
L., Marom, G. & Wagner, H.D. 2006. Dispersions of surface-modified carbon nanotubes in water-soluble
and water-insoluble polymers. Advanced Functional
Materials 16(3): 357-363.
Wang,
C., Li, K.Z., Li, H.J., Jiao, G.S., Lu, J. & Hou,
D.S. 2008. Effect of carbon fiber dispersion on the mechanical properties of
carbon fiber-reinforced cement-based composites. Materials Science
and Engineering: A 487(1): 52-57.
Witt, K. & Zeh, R. 2005. Cracks due to desiccation in cover lining systems phenomena
and design strategy. International Workshop LIRIGM,
Grenoble University, France.
Yazdanbakhsh, A., Grasley,
Z., Tyson, B. & Abu Al-Rub, R. 2010. Distribution of
carbon nanofibers and nanotubes in cementitious composites. Transportation
Research Record: Journal of the Transportation Research Board 2142: 89-95.
Yazdanbakhsh, A., Grasley, Z., Tyson, B. & Al-Rub, R.A. 2009. Carbon nano filaments in cementitious materials: Some issues on dispersion and interfacial
bond. ACI Special Publication 267: 21-34.
Yetimoglu, T., Inanir, M. & Esatinanir, O.
2005. A study
on bearing capacity of randomly distributed fiber-reinforced sand fills
overlying soft clay. Geotextiles and Geomembranes 23(2): 174-183.
*Corresponding
author; email: jamalshref@yahoo.com
|