Sains Malaysiana
47(4)(2018): 731-739
http://dx.doi.org/10.17576/jsm-2018-4704-11
Effect of Tea Polyphenols on α-Amylase Activity in Starch
Hydrolysis
(Kesan Polifenol Teh terhadap Aktiviti
α-Amilase pada Hidrolisis Kanji)
NURUL NADIAH BINTI
ISMAIL, UTHUMPORN UTRA*, CHENG LAI HOONG & AZHAR BIN MAT ESA
Food Technology Division, School of Industrial Technology,
Universiti Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia
Received:
13 June 2017/Accepted: 26 October
2017
ABSTRACT
Tea leaves (Camellia sinensis)
contain bioactive compounds that can help prevent certain diseases. In this study, the inhibitory effect of
polyphenolic components of different types of tea leaves (green, oolong and
black) extracted using different solvents (ethanol, methanol and water) on α-amylase activity of human saliva were investigated in vitro. Total phenolic
content (TPC), total flavonoid content (TFC), ferric reducing/antioxidant power
and inhibition of free radical scavenging activity by 1,1-diphenyl-2-picrylhydrazyl of the extracts were measured. Content of gallic acid, caffeine and four catechins
also were quantified by high performance liquid chromatography. The ethanol
extracts had the highest TPC (124.34-231.23 mg gallic acid equivalents (GAE)/g
sample), followed by the methanol extracts (124.28-209.76 mg GAE/g sample) and the water extracts (66.89-136.51 mg GAE/g sample). All three solvent extractions of green tea leaves contained the highest TPC, TFC and
antioxidant activity, followed by oolong and black tea leaves. Green tea leaves
contained higher amounts of catechins than oolong and black tea leaves. All four catechins were detected in green and oolong tea leaves but only gallocatechin gallate was found in black tea leaves. Next, the effect of tea leaves extracts on starch hydrolysis by α-amylase enzyme from human saliva at 37°C was studied. The starches were hydrolyzed with 0.01% enzyme
for 240 min and the extent of hydrolysis was determined based on the dextrose
equivalent value. The extent of starch hydrolysis by the tea leaves was as follows: green tea > oolong tea > black tea. The low degree of hydrolysis for black tea was due to its strong
inhibitory effect on α-amylase activity. Thus, green, oolong and black tea
leaves inhibit activity of α-amylase to different degrees due to their
differing compositions and structures of phenolic compounds.
Keywords: α-amylase activity; black tea; green tea;
hydrolyzing starch; oolong tea; phenolic content
ABSTRAK
Daun teh (Camellia sinensis)
mempunyai sebatian bioaktif sebagai pencegahan penyakit tertentu. Penyelidikan
ini mengkaji tentang kesan perencatan enzim α-amylase oleh komponen polifenol daripada pelbagai jenis daun teh (hijau, oolong dan hitam) dengan menggunakan kaedah pengekstrakan (etanol, metanol dan air) yang berlainan secara in vitro. Dalam kajian ini, penentuan jumlah kandungan fenolik (TPC), jumlah
kandungan flavonoid (TFC), pengurangan kuasa ferum antioksidan (FRAP) dan
perencatan aktiviti pembasmian radikal bebas oleh 1,1-difenil-2-picrilhidrazil
(DPPH) dijalankan. Kandungan asid gallik, kafein dan empat jenis catechin telah
dianalisis dan diukur dengan menggunakan alat analisis kromatografi cecair prestasi tinggi (HPLC). Pengekstrakan etanol menghasilkan jumlah kandungan fenolik tertinggi (124.34-231.23 mg GAE/g sampel), diikuti dengan pengekstrakan metanol (124.28-209.76 mg GAE/g sampel) dan pengekstrakan menggunakan air (66.89-136.51 mg GAE/g sampel). Ketiga-tiga jenis larutan pengekstrakan menunjukkan
daun teh hijau mempunyai kandungan TPC, TFC dan antioksidan tertinggi diikuti oleh daun teh oolong dan daun teh hitam.
Daun teh hijau mengandungi jumlah katekin lebih tinggi daripada daun teh oolong dan daun teh hitam. Keempat-empat katekin dijumpai terkandung
dalam daun teh hijau dan teh oolong, tetapi hanya gallokatecin gallat sahaja
dijumpai dalam teh hitam. Selain itu, kesan penambahan ekstrak daun teh pada
hidrolisis kanji dengan menggunakan enzim α-amilase daripada air liur
manusia pada suhu 37°C telah dikaji. Kanji telah dihidrolisiskan dengan
menggunakan enzim berkepekatan 0.01% selama 240 min dan kadar hidrolisis
ditentukan oleh nilai bersamaan dektrosa. Keputusan
hidrolisis kanji ditunjukkan dalam urutan: teh hijau> teh oolong> teh hitam. Tahap hidrolisis terendah untuk teh hitam
terbukti daripada perencatan tertinggi teh hitam pada aktiviti enzim α-amilase. Ini membuktikan bahawa penambahan daun teh yang berbeza menunjukkan tahap perencatan aktiviti
enzim α-amilase yang berbeza kerana komposisi dan struktur sebatian
fenolik yang berbeza pada setiap jenis daun teh.
Kata kunci: Aktiviti α-amilase; teh hitam; teh
hijau; hidrolisis kanji; teh oolong; kandungan fenolik
REFERENCES
Ahmed, F. & Urooj, A. 2010. In vitro studies on the hypoglycemic potential of Ficus racemosa stem bark. Journal of the Science of Food and
Agriculture 90(3): 397-401.
Alma, M.H., Mavi, A., Yildirim, A., Digrak, M. & Hirata, T. 2003.
Screening chemical composition and in
vitro antioxidant and antimicrobial activities of the essential
oils from Origanum syriacum l. growing in turkey. Biological and Pharmaceutical Bulletin 26: 1725-1729.
Alothman, M., Bhat, R. & Karim, A.A. 2009. Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvent. Food Chemistry 115: 785-788.
Apostolidis, E. & Lee, C.M.
2010. In vitro potential of Ascophyllum nodosum phenolic
antioxidant-mediated alpha–glucosidase and alpha-amylase. J. Food Sci. 75: 97-102.
Bailey, C.J. 2001. New approaches
to the pharmacotherapy of diabetes. 3rd ed. In Text Book of Diabetes, edited by Pickup, J.C. & William, G. UK: Blackwell Science Ltd. 2: 73.1-73.2.
Balentine, D.A. 1997. Manufacturing and chemistry of tea. In Phenolic
Compounds in Food and their Effects on
Health, Antioxidants and Cancer Prevention, edited by Ho, C.T., Lee, C.Y. & Huang, M.T. Washington: American Chemical Society.
Benzie, I.F.F. & Szeto, Y.T. 1999. Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. Journal of Agricultural and Food Chemistry 47: 633-636.
Bhoo, P.N., Peeters, P., van
Gils, C., Beulens, J.W.J., van der Graaf, Y. & Bueno-de-Mesquita, B. 2010.
Coffee and tea intake and risk of breast cancer. Breast Cancer Research and Treatment 121: 461-467.
Chan, E.W.C., Lim, Y.Y., Chong, K.L., Tan, J.B.L. &
Wong, S.K. 2010. Antioxidant properties of tropical and temperate
herbal teas. Journal of Food Composition and Analysis 23: 185-189.
Chen, N., Bezzina, R., Hinch, E., Lewandowski, P.A., Cameron- Smith, D., Mathai, M.L., Jois,
M., Sinclair, A.J., Begg, D.P., Wark, J.D., Weisinger, H.S. & Weisinger, R.S. 2009. Green tea, black tea, and epigallocatechin modify body
composition, improve glucose tolerance, and differentially alter metabolic gene expression in rats fed a high-fat
diet. Nutr. Res. 29(11): 784-793.
Demiray, S., Pintado, M.E. & Castro, P.M.L. 2009. Evaluation of phenolic profiles and antioxidant
activities of Turkish medical plants: Tilia argentea, Crataegi folium leaves and Polygonum
bistorta roots. World Academy of Science, Engineering and
Technology 3: 06-24.
Eklund, P.C., Langvik, O.K., Warna, J.P., Salmi, T.O.,
Willfor, S.M. & Sjoholm, R.E. 2005. Chemical studies on antioxidant mechanisms and free rradical
scavenging properties of lignans. Organic and Bimolecular Chemistry 21: 3336-3347.
Gordon, J., Mcdougall, Faina, S., Patricia, D., Pauline, S., Alison, B. & Derek, S. 2005. Different polyphenolic components of soft
fruits inhibit α-amylase and α-lucosidase. J. Agric. Food Chem. 53: 2760-2766.
Hara, Y. & Honda, M. 1990. The inhibition of α-amylase in tea polyphenols. Agric. Biol. Chem. 54: 1939-1945.
Higdon, J.V. & Frei, B. 2003. Tea catechins and polyphenols: Health effects, metabolism and antioxidant functions. Crit. Rev. Food Sci. Nutr. 43: 89-143.
Horzic, D., Komes, D.,
Belscak, A., Ganic, K.K., Ivekovic, D. & Karlovic, D. 2009. The composition
of polyphenols and methylxanthines
in teas and herbal infusions. Food Chem. 115: 441-448.
Huafu, W., Gordon,
J.P. & Keith, H. 2000. Tea flavonoids: Their functions, utilisation and analysis. Trends in Food Science &
Technology 11: 152-160.
Jeszka-Skowron, M., Zgola-Grzes´kowiak, A. &
Grzes´kowiak, T. 2015. Analytical methods applied for the
characterization and the determination of bioactive compounds
in coffee. Eur. Food Res. Technol. 240: 19-31.
Jianbo, X., Guoyin, K.,
Xiaoling N., Fan, Y. & Xiaoqing,
C. 2011. Interaction of natural polyphenols with α-amylase in vitro: Molecular property–affinity relationship aspect. Mol. BioSyst. 7: 1883-1890.
Khokhar, S. & Magnusdottir,
S.G.M. 2002. Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom. J. Agric. Food Chem. 50: 565-570.
Kim, Y., Goodner, K.L.,
Park, J.D., Choi, J. & Talcott, S.T. 2011. Changes in antioxidant
phytocemicals and volatile composition of Camellia
sinensis by oxidation during tea fermentation. Food Chemistry 129: 1331-1342.
Kwon, Y.I., Apostolidis, E. & Shetty, K. 2008. Inhibitory potential of wine and tea against alpha-amylase and alpha-glucosidase
for management of hyperglycemia linked to type 2 diabetes. J. Food Biochem. 32: 15-31.
Lee,
M.J., Maliakal, P., Chen, L., Meng, X., Bondoc, F.Y., Prabhu,
S., Lambert, G., Mohr, S. & Yang, C.S. 2002. Pharmacokinetics of tea
catechins after ingestion of green tea and (–)-epigallocatechin-3-gallate by humans: Formation of different metabolites and individual variability. Cancer Epidemiol., Biomarkers Prev. 10: 1025-1032.
Liang, H., Liang, Y., Dong, J., Lu, J., Xu, H. & Wang, H. 2007. Decaffeination of fresh
green tea leaf (Camellia sinensis) by
hot water treatment. Food Chemistry 101:
1451-1456.
Lilian, U.T. 1994.
Potential health benefits and problems associated with antinutrients in foods. Food Research International 93: 963-969.
Lin, Y., Tsai, Y., Tsay, J. & Lin, J. 2003. Factors affecting the levels of tea polyphenols and caffeine in tea leaves. J. Agric. Food Chem. 51: 1864-1873.
Liu, X., Zho, M., Wang, J., Yang, B. & Jiang, Y. 2008. Antioxidant
activity of methanolic extract of emblica fruit (Phyllanthus emblica L.) from
six regions in China. Journal of Food
Composition and Analysis 21(3): 219-228.
Mcdougall, G.J. &
Stewart, D. 2005. The inhibitory effects of berry polyphenols on digestive
enzymes. Biofactors 23: 189-195.
Naczk, M. & Shahidi, F. 2006. Phenolics in cereals, fruits and
vegetables: Occurance, extraction and analysis. Journal of Pharmaceutical and Biomedical Analysis 41: 1523-1542.
Naldi, M., Fiori, J., Gotti, R., Pe’ riat, A., Veuthey, J.L., Guillarme, D. & Andrisano, V. 2014. UHPLC determination of
catechins for the quality control of green tea. Journal of Pharmaceutical and Biomedical Analysis 88: 307-314.
Nwuha, V., Nakajima, M., Tong, J.
& Ichikawa, S. 1999. Solubility study of green tea extracts in pure
solvents and edible oils. J. Food Eng. 40:
161-165.
Pan, X., Niu, G. & Liu, H. 2003. Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chemical Engineering and Processing 42(2): 129-133
Pinelo, M., DelFabbro, P., Marzocco, L., Nunez, M.J.
& Vicoli, M.C. 2005. Optimization of
continuous phenol extraction from vitis vinifera byproducts. Food Chem. 92: 109-117.
Rhabasa-Lhoret, R. &
Chiasson, J.L. 2004. α-Glucosidase inhibitors, In International Textbook of Diabetes mellitus, vol. 1, 3rd ed, edited
by Defronzo, R.A., Ferrannini, E., Keen, H. & Zimmet, P. U.K. John Wiley
& Sons Ltd. pp. 901-914.
Rohn, S., Rawel, H.M. &
Kroll, J. 2002. Inhibitory effects of plant phenols on the activity of selected
enzymes. Journal of Agricultural Food
Chemistry 50: 3566-3571.
Rusak, G., Komes, D., Likic´, S., Horzic´, D. & Kovac, M. 2008.
Phenolic content and antioxidative capacity of green and white tea extracts depending
on extraction conditions and the solvent used. Food
Chemistry 110: 852-858.
Saito, S., Okamoto, Y. & Kawabata, J. 2004. Effect of alcoholic solvents on
antiradical abilities of protocatechuic acid and its alkyl esters. Bioscience Biotechnology and Biochemistry 68:
1221-1227.
Sanchez-Moreno, C., Larrauri,
J.A. & Saura-Calixto, F. 1998. A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture 76: 270-276.
Siddhuraju, P. & Becker, K. 2003. Antioxidant properties of various extracts of total phenolic constituents from three
different agroclimatic origins of drumstick tree (Moringa oleifera lam.)
leaves. J. Agric. Food Chem. 51:
2144-2155.
Skerget, M., Kotnik, P., Hadolin, M., Hras, A.R., Simonic, M.
& Knez, Z. 2005. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Journal of Food Chemistry 89: 191-198.
Sroka, Z. & Cisowski, W. 2003. Hydrogen peroxide scavenging, antioxidant and antiradical activity of some phenolic acids. Food
and Chemical Toxicology 41: 753-758.
Szymczycha-Madeja, A., Welna, M.
& Pohl, P. 2015. Determination of essential and non-essential elements in
green and black teas by FAAS and ICP OES simplified– multivariate
classification of different tea products. Microchemical
Journal 121: 122-129.
Timell, T.E., Glaudemans, C.P.J.
& Currie, A.L. 1956. Spectrophotometric methods for determination of
sugars. Anal. Chem. 28: 1916-1920.
Tresserra-Rimbau, A., Rimm, E.B., Medina-Remon, A., Martinez-Gonzalez,
M.A., de la Torre, R., Corella, D., Salas-Salvado,
J., Gomez-Gracia, E., Lapetra, J., Aros, F., Fiol, M., Ros, E., Serra-Majem, L., Pinto, X., Saez, G.T., Basora, J., Sorli, J.V., Martinez, J. A., Vinyoles, E., Ruiz
Gutierrez, V., Estruch, R. & Lamuela-Raventos, R.M. 2014. Inverse association between habitual polyphenolintake and incidence of cardiovascular events in the PREDIMED study. Nutr. Metab. Cardiovasc. Dis. 24(6): 639-647.
Turkmen, N., Sari, F. & Velioglu, Y.S. 2006. Effects of extraction solvents on concentration and
antioxidant activity of black and
black mate tea polyphenols determined by ferrous tartrate and Folin-Ciocaltue
methods. Food Chemistry 99: 835-841.
Uchenna, J.U., Selena, A., Adam, K., James, T.L. & Edward, J.K. 2010. White and green teas (Camellia sinensis var. sinensis): Variation in phenolic, methylxanthine, and antioxidant profiles. Journal of Food Science 75: 66-78.
Vrhovsek, U., Rigo, A., Tonon, D. & Mattivi, F. 2004.
Quantitation of polyphenols in different apple varieties Journal
of Agricultural and Food Chemistry 52: 6532-6538.
Yen, G.C. & Chen,
H.Y. 1995. Antioxidant activity of various tea extracts in relation to their
antimutagenicity. J. Agric. Food Chem. 43:
27-32.
Zhang, J. & Kashket, S. 1997.
Inhibition of salivary amylase by black and green teas and their effects on the
intra-oral hydrolysis of starch. Caries
Res. 32: 233-238.
Zhishen, J., Mengcheng, T. & Jianming, T. 1999. The determination
of flavonoid content in mulberry and their scavenging effects on superoxide
radicals. Food Chem. 64: 555-559.
Zimmermann, B.F. & Gleichenhagen, M. 2011. The effect
of ascorbic acid, citric acid and low pH on the extraction of green tea: How to
get most out of it. Food Chemistry 124:
1543-1548.
*Corresponding
author; email: sapina@usm.my