Sains Malaysiana 47(4)(2018): 839-851

http://dx.doi.org/10.17576/jsm-2018-4704-24

 

Physico-Mechanical, Chemical Composition, Thermal Degradation and Crystallinity of Oil Palm Empty Fruit Bunch, Kenaf and Polypropylene Fibres: A Comparatives Study

(Fiziko-Mekanikal, Komposisi Kimia, Degradasi Haba dan Habluran Serabut Tandan Kosong Kelapa Sawit, Kenaf dan Polipropilena: Kajian Perbandingan)

 

NOOR INTAN SAFFINAZ ANUAR1, SARANI ZAKARIA*1, HATIKA KACO1, CHIA CHIN HUA1, WANG CHUNHONG2 & HUSNA SHAZWANI ABDULLAH1

 

1Bioresources and Biorefinery Laboratory, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Wang Chunhong School of Textile, Tianjin Polytechnic University 300384, Xiqing, China

 

Received: 13 May 2017/Accepted: 1 November 2017

 

ABSTRACT

 

The physico-mechanical and chemical properties of enzyme retting kenaf and shredded empty fruit bunch of oil palm fibres (EFB) were analyzed by chemical extraction, microscopic, spectroscopic, thermal and X-ray diffraction method. Polypropylene (PP), a petroleum based fibre, was also included to compare the properties of synthetic fibre with natural fibres. Chemical extraction analysis showed that cellulose was the major component in both kenaf and EFB fibres which are 54% and 41.34%, respectively. Silica content of EFB was 5.29% higher than kenaf that was 2.21%. The result of thermogravimetric analysis showed that kenaf has higher thermal decomposition rate compared to EFB fibre. However, the residue for EFB fibre was higher than kenaf due to higher content in inorganic materials. The residual content of PP fibre was only 1.13% which was lower than the natural fibre. The diameter of EFB fibre bundle was 341.7 µm that was three times higher than kenaf. Microscopy study demonstrated that EFB surface was rough, porous and embedded with silica while kenaf showed smooth surface with small pith. Higher porosity in EFB was due to the lower fibre density that was 1.5 kg/cm3 compared to kenaf that was 1.62 kg/cm3. Kenaf has illustrated significant higher tensile strength (426.4 MPa) than EFB (150 MPa) and this result is in parallel to the pattern of the crystalline value for both fibres, 65% and 50.58%, respectively.

 

Keyword: EFB statistic; kenaf statistic; polypropylene; tensile strength; thermal analysis

 

 

ABSTRAK

 

Sifat fiziko-mekanikal dan kimia kenaf yang diretan melalui enzim dan serabut tandan kosong buah kelapa sawit (EFB) yang dipecahkan telah dianalisis melalui kaedah pengekstrakan kimia, mikroskopik, spektroskopik, haba dan pembelauan sinar-X. Kajian ini juga termasuk serabut berasaskan petroleum, polipropilena (PP) untuk membandingkan sifat serabut asli dan tiruan. Analisis pengekstrakan kimia membuktikan selulosa merupakan komponen utama dalam kedua-dua serabut kenaf dan EFB iaitu masing-masing 54% dan 41.34%. Kandungan silika EFB adalah 5.29% lebih tinggi daripada kenaf itu 2.21%. Keputusan themogravimetrik menunjukkan kenaf mempunyai kadar degradasi haba yang lebih tinggi berbanding dengan EFB. Walau bagaimanapun, sisa EFB adalah lebih tinggi daripada kenaf kerana kandungan bahan-bahan bukan organik yang lebih tinggi. Kandungan sisa serat PP hanya 1.13% iaitu lebih rendah daripada serabut semula jadi. Diameter berkas serabut EFB adalah 341.7 µm iaitu tiga kali lebih tinggi daripada serabut kenaf. Kajian mikroskopoik menunjukkan bahawa permukaan EFB adalah kasar, poros dan terkandung dengan silika manakala kenaf menunjukkan permukaan yang licin dengan saiz empulur yang kecil. Keliangan yang lebih tinggi dalam EFB adalah berkaitan dengan ketumpatan serat yang lebih rendah iaitu 1.5 kg/cm3 berbanding kenaf iaitu 1.62 kg/cm3. Kenaf menunjukkan kekuatan tegangan yang lebih tinggi yang ketara (426.4 MPa) daripada EFB (150 MPa) yang selari dengan corak nilai kristal untuk kedua-dua serat, masing-masing 65% dan 50.58%.

 

Kata kunci: Analisis termal; kekuatan tegangan; polipropilena; statistik EFB; statistik kenaf

 

REFERENCES

 

Abdul Hamid, H., Yusoff, M.H., Ab-Shukor, N.A., Zainal, B. & Musa, M.H. 2009. Effects of different fertilizer application level on growth and physiology of Hibiscus cannabinus L. (kenaf) planted on bris soil. Journal of Agricultural Science 1: 120-131.

Abdul Khalil, H.P.S., Siti Alwani, M., Ridzuan, R., Kamarudin, H. & Khairul, A. 2008. Chemical composition, morphological characteristics, and cell wall structure of Malaysian oil palm fibres. Polymer-Plastics Technology and Engineering 47(3): 273-280.

Abdul Khalil, H.P.S., Yusra, A.F.I., Bhat, A.H. & Jawaid, M. 2010. Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fibre. Industrial Crops and Products 31(1): 113-121.

Abdullah, N. & Sulaiman, F. 2013. The Oil Palm Wastes in Malaysia. In Biomass Now - Sustainable Growth and Use, edited by Miodrag Darko Matovic. https://www.intechopen. com/books/biomass-now-sustainable-growth-and-use/the-oil-palm-wastes-in-malaysia. Accessed on 13 February 2017.

Ahmad, H.R.A. 2012. Oil palm biomass residue in Malaysia: Availability and sustainability. International Journal of Biomass & Renewables 2(1): 13-18.

Agensi Inovasi Malaysia. 2012. National Biomass Strategy 2020: New Wealth Creation for Malaysia’s Palm Oil Industry. http://feldaglobal.com/site-content/National%20 Biomass%20Strategy%20Nov%2020 11%20FINAL.pdf. Accessed on 25 February 2017.

Akil, H.M., Omar, M.F., Mazuki, A.M., Safiee, S., Ishak, Z.A.M. & Abu Bakar, A. 2011. Kenaf fibre reinforced composites: A review. Materials and Design 32: 4107-4121.

Alves Fidelis, M.E., Pereira, T.V.C., Gomes, O.D.F.M., De Andrade Silva, F. & Toledo Filho, r.D. 2013. The effect of fibre morphology on the tensile strength of natural fibres. Journal of Materials Research and Technology 2(2): 149-157.

Asumani, O.M.L., Reid, R.G. & Paskaramoorthy, R. 2012. The effects of alkali–silane treatment on the tensile and flexural properties of short fibre non-woven kenaf reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing 43: 1431-1440.

Bakar, A.A., Hassan, A. & Mohd Yusof, A.F. 2006. The effect of oil extraction of the oil palm empty fruit bunch on the processability, impact, and flexural properties of pvc-u composites. International Journal of Polymeric Materials 55(9): 627-641.

Basiron, Y. & Weng, C.K. 2004. The oil palm and its sustainability. Journal of Oil Palm Research 16(1): 1-10.

Beg, M.D. & Pickering, K.L. 2007. The effects of residual lignin content on wood fibre reinforced polypropylene composites. Advance Materials Research 29-30: 323-326.

Bledzki, A.K. & Gassan, J. 1999. Composites reinforced with cellulose based fibres. Progress in Polymer Science 24: 221-274.

Cheng, Z., Fujiwara, S., Ohtani, Y.  & Sameshima, K. 2000.    A new method of sample preparation for kenaf bast fiber length analysis with automated fibre length analyzer. Holzforschung 54: 213-218.

Das, D., Pradhan, A.K., Chattopadhyay, R. & Singh, S.N. 2012. Composite nonwovens. Textile Progress 44: 1-84.

Dicker, M.P.M., Duckworth, P.F., Baker, A.B., Francois, G., Hazzard, M.K. & Weaver, P.M. 2014. Green composites: A review of material attributes and complementary applications. Composites Part A: Applied Science and Manufacturing 56: 280-289.

Edem, D.O. 2002. Palm oil: Biochemical, physiological, nutritional, hematological, and toxicological aspects: A review. Plant Foods for Human Nutrition 57: 319-341.

Farkhan Purwanto, Y.A., Hambali, E. & Hermawan, W. 2016. Selecting part of natural fibre efb which has best mechanical strength through tensile test analysis for composite reinforced material. Engineering and Applied Sciences 11(17): 10522-10528.

Gan, S.Y., Zakaria, S., Chia, C.H., Kaco, H. & Padzil, F.N.M. 2014. Synthesis of kenaf cellulose carbamate using microwave irradiation for preparation of cellulose membrane. Carbohydrate Polymers 106: 160-165.

Han, S.O., Karevan, M., Bhuiyan, M.A., Park, J.H. & Kalaitzidou, K. 2012. Effect of exfoliated graphite nanoplatelets on the mechanical and viscoelastic properties of poly(lactic acid) biocomposites reinforced with kenaf fibers. Journal of Materials Science 47(8): 3535-3543.

Hao, A. 2013. Mechanical and thermal properties of kenaf/polypropylene nonwoven composites. PhD Dissertation. Univesity of Texas at Austin (Unpublished).

Husain, Z., Zainac, Z. & Abdullah, Z. 2002. Briquetting of palm fibre and shell from the processing of palm nuts to palm oil. Biomass and Bioenergy 22: 505-509.

Ibrahim, Z., Aziz, A.A. & Ramli, R. 2015. Effect of treatment on the oil content and surface morphology of oil palm (Elaeis guineensis) empty fruit bunches (EFB) fibres. Wood Research 60(1): 157-166.

Jonoobi, M., Khazaeian, A., Tahir, P.M., Azry, S.S. & Oksman, K. 2011. Characteristics of cellulose nanofibres isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process. Cellulose 18(4): 1085-1095.

John, M.J. & Thomas, S. 2007. Biofibres and biocomposites. Carbohydrate Polymers 71: 343-364.

Kalebek, N.A. & Baarslan, O. 2016. Fiber Selection for the Production of Nonwovens, Non-Woven Fabrics. https:// www.intechopen.com/books/non-woven-fabrics/fiber- selection-for-the-production-of-nonwovens. Accessed on 13 February 2017.

Kuroda, K.I., Nakagawa-Izumi, A., Mazumder, B.B., Ohtani, Y. & Sameshima, K. 2005. Evaluation of chemical composition of the core and bast lignins of variety chinpi-3 kenaf (Hibiscus cannabinus l.) by pyrolysis–gas chromatography/mass spectrometry and cupric oxide oxidation. Industrial Crops and Products 22(3): 223-232.

Lee, T., Zubir, Z.A., Jamil, F.M., Matsumoto, A. & Yeoh, F.Y. 2014. Combustion and pyrolysis of acticated carbon fibre from oil palm empty fruit bunch fibre assisted through chemical activation with acid treatment. Journal of Analytical and Applied Pyrolysis 110: 408-418.

Lu, F., Karlen, S.D., Regner, M., Kim, H., Ralph, S.A., Sun, R.C., Kuroda, K.I., Augustin, M.A., Mawson, R., Sabarez, H., Singh, T., Jimenez-Monteon, G., Zakaria, S., Hill, S., Harris, P.J., Boerjan, W., Wilkerson, C.G., Mansfield, S.D. & Ralph, J. 2015. Naturally p-hydroxybenzoylated lignins in palms. BioEnergy Research 8(3): 934-952.

MPIC. 2016. Commodity dataset kenaf 2016. https://www. kppk.gov.my/mpic/index.php/en/statistic-on-commodity/ dataset/721. Accessed on 12 February 2017.

Mohd, H.A.B., Arifin, A., Nasima, J., Hazandy, A.H. & Khalil, A. 2014. Journey of kenaf in Malaysia: A review. Scientific Research and Essays 9(11): 458-470.

MPOB. 2016. Statistics Production. http://bepi.mpob.gov.my/ index.php/my/statistics/production.html. Accessed 12 February 2017.

Mukherjee, I. & Sovacool, B.K. 2014. Palm oil-based biofuels and sustainability in Southeast Asia: A review of Indonesia, Malaysia and Thailand. Renewable and Sustainable Energy Reviews 37: 1-12.

Tahir, P.M., Ahmed, A.B., Saifulazry, S.O.A. & Ahmed, Z. 2011. Retting process of some bast plant fibres and its effect on fibre quality: A review. BioResources 6(4): 5260-5281.

Parikh, D.V., Thibodeaux, D.P. & Condon, B. 2007. X-ray crystallinity of bleached and crosslinked cottons. Textile Research Journal 77(8): 612-616.

Pickering, K.L., Aruan Efendy, M.G. & Le, T.M. 2016. A review of recent development in natural fibre composites and their mechanical performance. Composites Part A 83: 98-112.

Salmén, L. & Bergström, E. 2009. Cellulose structural arrangement in relation to spectral changes in tensile loading FTIR. Cellulose 16: 975-982.

Segal, L., Creely, J.J., Martin, A.E. & Conrad, C.M. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Textile Research Journal 29(10): 786-794.

Sheil, D., Casson, A., Meijaard, E., Van Noordwjik, M., Gaskell, J., Sunderland-Groves, J., Wertz, K. & Kanninen, M. 2009. The Impacts and Opportunities of Oil Palm in Southeast Asia: What Do We Know and What Do We Need to Know? Occasional paper no.51 CIFOR, Bogor, Indonesia.

Shuit, S.H., Tan, K.T., Lee, K.T. & Kamaruddin, A.H. 2009. Oil palm biomass as a sustainable energy source: A Malaysian case study. Energy 34(9): 1225-1235.

Shubhra, Q.T., Alam, A. & Quaiyyum, M. 2011 Mechanical properties of polypropylene composites: A review. Journal of Thermoplastic Composite Materials 26(3): 362-391.

Sulaiman, S.A. & Taha, F.F.F. 2014.  Drying of oil palm fronds using concentrated solar thermal power. Applied Mechanics and Materials 699: 449-454.

Yang, H., Yan, R., Chen, H., Lee, D.H. & Zheng, C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86: 1781-1788.

Yusoff, S. 2006. Renewable energy from palm oil - innovation on effective utilization of waste. Journal of Cleaner Production 14(1): 87-93.

Yu, H. & Yu, C. 2007. Study on microbe retting of kenaf fibre. Enzyme and Microbial Technology 40: 1806-1809.

Wise, L.E. & Murphy, M. 1946. A chlorite holocellulose, its fractionation and bearing on summative wood analysis and studies on the hemicellulose. Paper Trade Journal 122(2): 35-43.

Zakaria, S., Roslan, R., Amran, U.A., Chia, C.H. & Bakaruddin, S.B. 2014. Characterization of residue from EFB and kenaf core fibres in the liquefaction process. Sains Malaysiana 43(3): 429-435.

Zhang, T. 2003. Improvement of kenaf yarn for apparel applications. Master Thesis. Lousiana State University (Unpublished).

 

*Corresponding author; email: szakaria@ukm.edu.my

 

 

 

 

previous