Sains Malaysiana 47(5)(2018): 991–997

http://dx.doi.org/10.17576/jsm-2018-4705-14

 

Impact of Shoreline Changes to Pahang Coastal Area by Using Geospatial Technology

(Impak Perubahan Persisiran Kawasan Pantai Pahang dengan Menggunakan Teknologi Georuang)

 

FAZLY AMRI MOHD1, KHAIRUL NIZAM ABDUL MAULUD1,2*, RAWSHAN ARA BEGUM3, SITI NORSAKINAH SELAMAT3 & OTHMAN A. KARIM1

 

1Department of Civil & Structural Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Earth Observation Centre, Institute of Climate Change (IPI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Institute of Climate Change (IPI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 18 September 2017/Accepted: 21 December 2017

 

ABSTRACT

Malaysia has a long coastline stretching over 4,809 km where more than 1,300 km of beaches are experiencing erosion. Coastal erosion is recognised as the permanent loss of land and habitats along the shoreline resulting in the changes of the coast. Thus, it is important to detect and monitor shoreline changes especially in Pahang coast by identifying the rate of shoreline erosion and accretion. This study used temporal data and high spatial resolution imagery (SPOT 5) using remote sensing and GIS techniques to monitor shoreline changes along 10 study locations, which is from Cherating to Pekan of the Pahang coast. The total length of shoreline changes is about 14 km (14035.10 m) where all these areas are very likely to experience erosion ranging from 0.1 to 94.7 ha. On the other hand, these coastal areas found a minimal accretion with increased sediment from 0.1 to 2.8 ha. Overall, the coastal areas are exposed to higher erosion process than accretion with a very high vulnerability of erosion rate from 1.8 to 20.9 meter per year. The findings on monitoring shoreline changes and identifying vulnerable erosion areas might be useful in the policy and decision making for sustainable coastal management.

 

Keywords: Accretion; coastal changes; erosion; geospatial; vulnerability

 

ABSTRAK

Malaysia mempunyai garis pantai sepanjang 4,809 km dengan lebih daripada 1,300 km pantai mengalami hakisan. Hakisan pantai dikenal pasti sebagai kehilangan tanah dan habitat yang kekal di sepanjang garis pantai yang mengakibatkan perubahan pantai. Oleh itu, adalah penting untuk mengesan dan memantau perubahan pantai terutamanya di pantai Pahang dengan mengenal pasti kadar hakisan dan penambahan pantai. Kajian ini menggunakan beberapa imej satelit beresolusi tinggi (SPOT 5) pada masa yang berbeza dengan menggunakan teknik penderiaan jauh dan GIS. Kawasan kajian adalah 10 lokasi yang terletak dari Cherating ke Pekan, Pahang. Keputusan kajian mendapati jumlah panjang perubahan garis pantai adalah lebih kurang 14 km (14035.10 m) dengan semua kawasan ini berkemungkinan terhakis antara 0.1 hingga 94.7 hektar. Sebaliknya, kawasan pesisir ini menemui penambahan minima dengan nilai sedimen daripada 0.1 hingga 2.8 hektar. Secara keseluruhannya, kawasan pesisir terdedah kepada proses hakisan yang lebih tinggi daripada penambahan dengan kadar kerentanan hakisan yang sangat tinggi daripada 1.8 hingga 20.9 meter setahun. Keputusan pemantauan perubahan pesisiran pantai dan pengenalpastian kawasan yang berkerentanan rendah dapat digunakan dalam membuat dasar dan keputusan bagi meningkatkan mutu pengurusan pantai.

 

Kata kunci: Georuang; hakisan; kerentanan; pemendapan; perubahan pantai

REFERENCES

Adger, W.N., Hughes, T.P., Folke, C., Carpenter, S.R. & Rockström, J. 2005. Social-ecological resilience to coastal disasters. Science 309(5737): 1036-1039.

Azid, A., Noraini, C., Hasnam, C., Juahir, H., Amran, M.A., Toriman, M.E. & Kamarudin, A. 2015. Coastal erosion measurement along Tanjung Lumpur to Cherok Paloh, Pahang during the Northeast Monsoon Season. Journal Teknologi 1: 27-34.

Chang, F.J. & Lai, H.C. 2014. Adaptive neuro-fuzzy inference system for the prediction of monthly shoreline changes in northeastern Taiwan. Ocean Engineering 84: 145-156.

Ciavola, P., Mantovani, F., Simeoni, U. & Tessari, U. 1999. Relation between river dynamics and coastal changes in Albania: An assessment integrating satellite imagery with historical data. International Journal of Remote Sensing 20: 561-584.

Cui, L., Ge, Z., Yuan, L. & Zhang, L. 2015. Vulnerability assessment of the coastal wetlands in the Yangtze Estuary, China to sea-level rise. Estuarine, Coastal and Shelf Science 156(1): 42-51.

Devi, G.K., Ganasri, B.P. & Dwarakish, G.S. 2015. Applications of remote sensing in satellite oceanography: A review. Aquatic Procedia 4: 579-584.

Dwivedi, R.S. 1997. The utility of multi-sensor data for mapping eroded land. International Journal of Remote Sensing 18: 2303-2318.

Frihy, O.E., Dewidar, K.M., Nasr, S.M. & El Raey, M.M. 1998. Change detection of the northeastern Nile delta of Egypt: Shoreline changes, spit evolution, margin changes of Manzala lagoon and its islands. International Journal of Remote Sensing 19: 1901-1912.

Hari Prasad Durusoju & Darga Kumar Nandyala 2014. Coastal erosion studies - A review. International Journal of Geosciences 5(5): 341-345.

Husain, M.L. & Yaakob, R. 1995. Beach erosion variabiltiy during a northeast monsoon: The Kuala Setiu. Science and Technology 3(2): 337-348.

Jensen, J. 2005. Introductory digital image processing: A remote sensing perspective. 3rd ed. Upper Saddle River, NJ: Prentice Hall.

Maglione, P., Parente, C. & Vallario, A. 2014. Coastline extraction using high resolution WorldView-2 satellite imagery. European Journal of Remote Sensing 47(1): 685-699.

Malaysian Meteorological Department. 2016. General Climate of Malaysia. http://www.met.gov.my/en/web/metmalaysia/ climate/generalinformation/malaysia. Accessed on 28 October 2016.

Mohd Zaini Mustapa, Shahbudin Saad, Muhammad Salihi Abdul Hadi, Kamaruzzaman Yunus & Noraisyah Sapon. 2015. Beach-face Morphodynamics of different morphological setting along Teluk Chempedak to Kuala Pahang, Malaysia. Jurnal Teknologi 77(25): 51-56.

Nicholls, R.J. & Cazenave, A. 2010. Sea-level rise and its impact on coastal zones. Science 18: 1517-1520.

Ong, J.E. 2014. Vulnerability of Malaysia to sea level change. In Vulnerability of Malaysia to Sea Level Change. pp. 1-5.

Pal, M. & Mather, P.M. 2004. Support vector machines for classification in remote sensing. International Journal of Remote Sensing 26(5): 1007-1011.

Raj, J.K. 1982. Net direction and rates of present-day beach sediment transport by littoral drift along the east coast of Peninsular Malaysia. Geological Society Malaysia Bulletin 15: 57-70.

Saravanan, S. 2014. Management of coastal erosion using remote sensing and GIS techniques (SE India). Ocean and Climate System 5(4): 211-221.

Small, C. & Nicholls, R.J. 2003. A global analysis of human settlement in coastal zones. Journal Coastal Resource 19(3): 584-599.

Tobergte, D.R. & Curtis, S. 2013. Malaysia east coast region. Journal of Chemical Information and Modeling 53(9): 1689-1699.

Yang, X., Damen, M.C.J. & Van Zuidam, R.A. 1999. Use of thematic mapper imagery with a geographic information system for geomorphologic mapping in a large deltaic lowland environment. International Journal of Remote Sensing 20: 659-681.

Yahaya, J. & Ramu, S.C. 2003. Coastal resource development in Malaysia: Is there a need for sustainable mangrove forest management? FEA working paper No. 2003-2.

Yoo, G., Kim, A.R. & Hadi, S. 2014. A methodology to assess environmental vulnerability in a coastal city: Application to Jakarta, Indonesia. Ocean and Coastal Management 102: 169-177.

Wdowinski, S., Bray, R., Kirtman, B.P. & Wu, Z. 2016. Increasing flooding hazard in coastal communities due to rising sea level: Case study of Miami Beach, Florida. Ocean and Coastal Management 126: 1-8.

Whittaker, C.N., Raby, A.C., Fitzgerald, C.J. & Taylor, P.H. 2016. The average shape of large waves in the coastal zone. Coastal Engineering 114: 253-264.

 

 

*Corresponding author; email: knam@ukm.edu.my

 

 

 

previous