Sains Malaysiana 47(6)(2018): 1147–1155
http://dx.doi.org/10.17576/jsm-2018-4706-10
Effect
of Plasma Treatment (He/CH4)
on the Glass Surface for the Reduction of Powder Flux Adhesion in
the Spray Drying Process
(Kesan
Rawatan Plasma (He/CH4)
terhadap Permukaan Kaca untuk Pengurangan Serbuk Lekatan Fluks di
dalam Proses Penyemburan Pengeringan)
NADIAH RAMLAN1, NAZIRAH
WAHIDAH
MOHD
ZAMRI1,
MOHAMAD YUSOF
MASKAT1,
MOHD
SUZEREN
MD
JAMIL1,
CHIN OI HOONG2,
LAU
YEN
THENG2
& SAIFUL IRWAN ZUBAIRI1*
1School of Chemical Sciences
and Food Technology, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2Plasma Technology Research
Centre, Physics Department, Universiti Malaya
50603 Kuala Lumpur, Federal Territory, Malaysia
Received: 25 September 2017/Accepted: 5 February 2018
ABSTRACT
A 50Hz glow discharge He/CH4
plasma was generated and applied for the glass surface
modification to reduce the powder adhesion on wall of spray dryer.
The hydrophobicity of the samples determined by the water droplet
contact angle and adhesion weight on glass, dependent on the CH4 flow
rate and plasma exposure time. The presence of CH3
groups and higher surface roughness of the plasma
treated glass were the factors for its hydrophobicity development.
Response surface methodology (RSM)
results using central composite rotatable design (CCRD)
showed that optimal responses were obtained by the combination of
parameters, CH4 gas flow rate = 3 sccm and exposure
time = 10 min. In optimum conditions, the contact angle increased
by 47% and the weight of the adhesion reduced by 38% (w/w). The
plasma treatment could enhance the value of the contact angle and
thus reduced the adhesion on the spray dryer glass surface.
Keywords: Flux adhesion; hydrophobic; plasma treatment; powder;
spray dryer; surface treatment
ABSTRAK
Pelepasan cahaya 50Hz plasma He/CH4
dijana dan digunakan pada modifikasi permukaan
kaca untuk mengurangkan lekatan serbuk pada dinding penyembur pengering. Hidrofobisiti sampel ditentukan oleh sudut sentuh titisan air dan
pemberat lekatan pada kaca, bergantung kepada kadar
pengaliran CH4 dan
tempoh dedahan plasma. Kehadiran kumpulan CH3
dan kekasaran permukaan plasma yang lebih tinggi dengan
rawatan kaca adalah faktor kepada pembentukan hidrofobisitinya.
Keputusan kaedah gerak balas permukaan (RSM) menggunakan reka bentuk berputar komposit berpusat
(CCRD)
menunjukkan bahawa respons optimum diperoleh daripada kombinasi
parameter, kadar pengaliran gas CH4
= 3 sccm dan tempoh dedahan = 10 minit. Dalam
keadaan optimum, sudut sentuh meningkat sebanyak 47% dan pemberat
lekatan dikurangkan sebanyak 38% (w/w). Rawatan
plasma boleh meningkatkan nilai sudut sentuh dan seterusnya mengurangkan
lekatan pada permukaan kaca penyembur pengering.
Kata kunci: Hidrofobik; lekatan fluks; penyembur
pengering; rawatan permukaan; rawatan plasma
REFERENCES
Avram, M., Avram, A.M.,
Bragaru, A., Ghiu, A. & Iliescu, C. 2008. Plasma surface
modification for selective hydrophobic control. Romanian Journal of
Information Science and Technology 11: 409-422.
Bhushan, B. & Jung, Y.C. 2011. Natural
and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low
adhesion, and drag reduction. Progress in Materials Science 56: 1-108.
Bhandari, B.R. &
Howes, T. 2005. Relating the stickiness property of foods undergoing drying and dried products
to their surface energetics. Drying Technology 23: 781-797.
Bismarck, A., Brostow,
W., Chiu, R., Hagg Lobland, H.E. & Ho, K.K. 2008. Effects of surface
plasma treatment on tribology of thermoplastic polymers. Polymer
Engineering & Science 48: 1971-1976.
Borcia, G., Anderson, C.
& Brown, N. 2004. The surface oxidation of selected polymers using an atmospheric pressure air
dielectric barrier discharge Part I. Applied Surface Science 221:
203-214.
Bowden, F.P. & Tabor, D. 2001. The
Friction and Lubrication of Solid. Oxford: Oxford University Press.
Cassie, A. & Baxter, S. 1944. Wettability of porous surfaces. Transactions of the
Faraday Society 40: 546-551.
Chaiwong, C.,
Rachtanapun, P., Wongchaiya, P., Auras, R. & Boonyawan, D. 2010. Effect of plasma
treatment on hydrophobicity and barrier property of polylactic acid. Surface
and Coatings Technology 204: 2933-2939.
Coen, M.C., Lehmann, R.,
Groening, P. & Schlapbach, L. 2003. Modification of the micro-and
nanotopography of several polymers by plasma treatments. Applied
Surface Science 207: 276-286.
Fang, Z. & Bhandari, B. 2011. Effect of spray drying and storage on the stability of bayberry
polyphenols. Food Chemistry 129: 1139-1147.
Fang, Z., Qiu, Y. &
Kuffel, E. 2004. Formation of hydrophobic coating on glass surface using atmospheric
pressure non-thermal plasma in ambient air. Journal of Physics D:
Applied Physics 37: 2261.
Fuller, K.N.G. 1975. The
effect of surface roughness on the adhesion of elastic solids. Proc.
R. Soc. Lond. A 345(1642): 327-342.
Gharsallaoui, A.,
Roudaut, G., Chambin, O., Voilley, A. & Saurel, R. 2007. Applications of spray-drying in
microencapsulation of food ingredients: An overview. Food Research
International 40: 1107-1121.
Keogh, M., O’kennedy,
B., Kelly, J., Auty, M., Kelly, P., Fureby, A. & Haahr, A.M. 2001. Stability to oxidation of spray‐dried
fish oil powder microencapsulated using milk ingredients. Journal of Food
Science 66: 217-224.
Keshani, S., Daud, W.R.W.,
Nourouzi, M., Namvar, F. & Ghasemi, M. 2015. Spray drying: An overview on wall deposition, process and
modeling. Journal of Food Engineering 146: 152-162.
Keshani, S., Daud, W.R.W., Woo, M.W., Nourouzi, M., Talib, M.Z.M.,
Chuah, A.L. & Russly, A. 2013. Reducing the deposition of fat and protein
covered particles with low energy surfaces. Journal of Food Engineering 116:
737-748.
Kota, K. & Langrish, T. 2006. Fluxes and patterns of wall deposits for skim milk in a
pilot-scale spray dryer. Drying Technology 24: 993-1001.
Millqvist-Fureby, A. 2003. Characterisation of spray-dried emulsions with mixed fat phases. Colloids
and Surfaces B: Biointerfaces 31: 65-79.
Noh, S. & Moon, S.Y. 2014. Formation and characterization of
hydrophobic glass surface treated by atmospheric pressure He/CH4 plasma. Journal
of Applied Physics 115: 043307- 1-043307-5.
Nosonovsky, M. & Bhushan, B. 2007. Hierarchical roughness optimization for
biomimetic superhydrophobic surfaces. Ultramicroscopy 107:
969-979.
Oakley, D. 1994. Scale-up of spray dryers with
the aid of computational fluid dynamics. Drying Technology 12:
217- 233.
Tan, S.H., Nguyen, N.T., Chua, Y.C. & Kang,
T.G. 2010. Oxygen plasma treatment for
reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics 4: 032204-1-032204-8.
Van Der Wal, P. & Steiner, U. 2007. Super-hydrophobic surfaces
made from teflon. Soft Matter 3: 426-429.
Wang, B. & Xu, G. 2002. wa Science in China Series B: Chemistry 45: 299-310.
Wen, C-H., Chuang, M-J. & Hsiue, G-H.
2006. Asymmetric surface modification of poly (ethylene terephthalate) film by
CF4 plasma immersion. Applied Surface Science 252: 3799-3805.
Yamamoto, T., Okubo, M., Imai, N. & Mori, Y.
2004. Improvement on hydrophilic
and hydrophobic properties of glass surface treated by nonthermal plasma
induced by silent corona discharge. Plasma Chemistry and Plasma
Processing 24: 1-12.
Yang, X., Moravej, M., Babayan, S., Nowling, G.
& Hicks, R. 2005. High
stability of atmospheric pressure plasmas containing carbon tetrafluoride and
sulfur hexafluoride. Plasma Sources Science and Technology 14:
412.
*Corresponding author; email: saiful-z@ukm.edu.my
|