Sains Malaysiana 47(6)(2018): 1189–1197
http://dx.doi.org/10.17576/jsm-2018-4706-14
Influence
of Poly (Ethylene Glycol) on the Characteristics of γ
Radiation-Crosslinked Poly (Vinyl Pyrrolidone)-Low Molecular Weight
Chitosan Network Hydrogels
(Kesan Poli(etilena
glikol) ke atas Ciri-ciri Jaringan Hidrogel Kitosan Berjisim Molekul
Rendah-Poli(vinil pirolidon)Tertautsilang melalui Teknik Sinar Gamma)
MAZNAH MAHMUD1,2*, RUSLI DAIK1 & ZAINAH ADAM 2
1School of Chemical Sciences and Food
Technology, Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Radiation Processing Technology
Division, Malaysian Nuclear Agency
43000 Kajang, Selangor Darul Ehsan, Malaysia
3Medical Technology Division, Malaysian
Nuclear Agency, 43000 Kajang, Selangor Darul Ehsan
Malaysia
Received: 9 June 2017/Accepted: 8 January
2018
ABSTRACT
PEG at compositions of 10, 15
and 20 g were added into the initial formulation of hydrogel L, which was
composed of 6 g low molecular weight chitosan (LMC)
and 14 g poly (vinyl pyrrolidone) in 100 g of 2% lactic acid. The mixtures were
moulded and exposed to γ radiation at 7 kGy. The hydrogels obtained were
characterized in term of gel fraction, swelling property, syneresis effect, FTIR, XRD and cross section morphology. The results indicated PEG reduces
almost 27% crosslinking density of the LMC-PVP hydrogel yet increased
hydrogel’s water holding capacity from 450% and 480% to 750% and 650% in
phosphate buffer solution (PBS) at pH5.5 and pH7.0, respectively.
Also PEG enhanced the ability of LMC-PVP hydrogel
to retain its moisture from dehydration at body temperature. The morphological
study showed PEG developed thick pores wall and reduced the pores size
of the hydrogels’ network.
Keywords: Covalent-crosslink; plasticizer;
porosity; swelling-equilibrium; syneresis
ABSTRAK
PEG
dengan komposisi yang pelbagai
iaitu 10, 15 dan 20 g telah ditambah ke dalam formulasi asal hidrogel
L yang telah disediakan melalui pengadunan 6 g kitosan berjisin
molekul rendah (LMC)
dengan 14 g poli (vinil pirolidon) dan 100 g asid laktik berkepekatan
2%. Semua adunan dimasukkan dalam acuan dan didedahkan kepada sinar
γ pada dos 7kGy. Hidrogel yang diperoleh
dibuat pencirian daripada aspek kandungan gel, sifat pembengkakan,
kesan sineresis, FTIR,
XRD
dan morfologi hidrogel menggunakan mikroskop imbasan
elektron (SEM).
Keputusan pencirian menunjukkan 10 g PEG telah mengurangkan ketumpatan
jaringan taut silangan hidrogel sebanyak 14% tetapi meningkatkan
keupayaan memegang air daripada 450% dan 480% kepada 750% dan 650%
masing-masing dalam larutan penimbal fosfat (PBS)
pada pH5.5 dan pH7.0. PEG juga meningkatkan keupayaan hidrogel
LMC-PVP untuk mengekalkan kelembapannya daripada terhidrat
pada suhu badan. Kajian morfologi juga menunjukkan PEG telah
membentuk satu jaringan hidrogel berliang lebih kecil dengan dinding
liang yang lebih tebal.
Kata kunci: Keliangan; pembengkakan ekuilibrium; pemplastik; sineresis;
taut silang kovalen
REFERENCES
Abad, L.V., Relleve, L.S., Aranilla,
C.T. & Rosa, A.M.D. 2003. Properties of radiation synthesized PVP-kappa
carrageenan hydrogel blends. Radiation Physics and Chemistry 68:
901-908. http://doi.org/10.1016/S0969-806X(03)00164-6.
Ako, K. 2015. Influence of elasticity
on the syneresis properties of Kappa-carrageenan gels. Carbohydrate Polymers 115:408-414. http://doi.org/10.1016/j.carbpol.2014.08.109.
Archana, D., Singh, B.K.,
Dutta, J. & Dutta, P.K. 2013. In
vivo evaluation of chitosan – PVP – titanium dioxide nanocomposite
as wound dressing material. Carbohydrate Polymers 95: 530-539.
http://doi.org/10.1016/j.carbpol.2013.03.034.
Berger, J., Reist, M., Mayer, J.M.,
Felt, O., Peppas, N.A. & Gurny, R. 2004. Structure and
interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical
applications. European Journal of Pharmaceutics and Biopharmaceutics 57: 19-34. http://doi.org/10.1016/S0939-6411(03)00161-9.
Can, H.K. 2005. Synthesis
of persulfate containing poly (N -vinyl-2-pyrrolidone) (PVP) hydrogels in
aqueous solutions by g -induced radiation. Radiation Physics and
Chemistry 72: 703–710. http://doi.org/10.1016/j. radphyschem.2004.04.028.
Das, A., Gupta, B.K. &
Nath, B. 2012. Mucoadhesive polymeric hydrogels for nasal delivery of Penciclovir. Journal of Applied Pharmaceutical Science 2: 158-166.
http://doi.org/10.7324/JAPS.2012.21228.
De Kruif, C.G.K., Anema,
S.G., Zhu, C., Havea, P. & Coker, C. 2015. Food hydrocolloids water holding
capacity and swelling of casein hydrogels. Food Hydrocolloids 44:
372-379. http://doi.org/10.1016/j.foodhyd.2014.10.007.
Dergunov, S.A. & Mun, G.A. 2009.
γ-irradiated chitosanpolyvinyl pyrrolidone hydrogels as pH-sensitive
proteindelivery system. Radiation Physics and Chemistry 78: 65-68.
http://doi.org/10.1016/j.radphyschem.2008.07.003.
Dergunov, S.A., Nam, I.K.,
Mun, G.A., Nurkeeva, Z.S. & Shaikhutdinov, E.M. 2005. Radiation synthesisand
characterization of stimuli-sensitive chitosan–polyvinyl pyrrolidone
hydrogels. Radiation Physics and Chemistry 72: 619–623. http://doi.org/10.1016/j. radphyschem.2004.03.011.
Divoux, T., Mao, B. & Snabre, P.
2015. Syneresis and delayed detachment of agar plates. Soft
Matter 11: 3677-3685. http://
doi.org/10.1039/C5SM00433K.
Duy, N.N., Phu, D., Van
Anh, N.T. & Hien, Q.N. 2011. Synergistic degradation to prepare oligochitosan by g -irradiation
of chitosan solution in the presence of hydrogen peroxide.Radiation
Physics and Chemistry 80:
848-853. http://doi.org/10.1016/j.radphyschem.2011.03.012.
El-sherbiny, I.M. &
Smyth, H.D.C. 2012. Poly (ethyleneglycol)– carboxymethyl chitosan-based pH-responsive
hydrogels: Photo-induced synthesis, characterization, swelling, and in
vitro evaluation as potential
drug carriers. Carbohydrate Research 345: 2004-2012. http://doi. org/10.1016/j.carres.2010.07.026.
Farag, R.K. & Mohamed, R.R. 2012. Synthesis and characterization of carboxymethyl chitosan nanogels
for swelling studies and antimicrobial activity.Molecules 18: 190-203. http://doi. org/10.3390/molecules18010190.
Hashemi, A., Mirzadeh, H.,
Imani, M. & Samadi, N. 2013. Chitosan/polyethylene glycol fumarate blend film: Physical and antibacterial
properties. Carbohydrate Polymers 92: 48-56. http://doi.org/10.1016/j.carbpol.2012.09.002.
Hezaveh, H. & Muhamad, I.I. 2013.
Controlled drug release via minimization of burst release in pH-response
kappacarrageenan/ polyvinyl alcohol hydrogels. Chemical Engineering Research
and Design 91: 508-519. http://doi.morg/10.1016/j.cherd.2012.08.014.
Hill, D.J.T., Whittaker, A.K. &
Zainuddin. 2011. Water diffusion into radiation crosslinked PVA – PVP
network hydrogels. Radiation Physics and Chemistry 80: 213-218. http://doi. org/10.1016/j.radphyschem.2010.07.035.
Jin, S., Liu, M., Zhang,
F., Chen, S. & Niu, A. 2006. Synthesis and characterization of pH-sensitivity semi-IPN hydrogel
based on hydrogen bond between poly (N-vinylpyrrolidone) and poly (acrylic
acid).Polymer 47:
1526–1532. http://doi. org/10.1016/j.polymer.2006.01.009.
Mahmud, M., Daik, R. &
Adam, Z. 2015. Properties of radiationsynthesized poly(vinyl
pyrrolidone)/chitosan hydrogel blends. AIP
Conference Proceedings. DOI: 10.1063/1.4931310.
Makuuchi, K. 2010. Critical
review of radiation processing of hydrogel and polysaccharide.Radiation
Physics and
Chemistry 79: 267-271. http://doi.org/10.1016/j. radphyschem.2009.10.011.
Meena, R., Prasad, K. &
Siddhanta, A.K.Ã. 2009. Food hydrocolloids development of a stable hydrogel network based on
agar–kappa-carrageenan blend cross-linked with genipin. Food
Hydrocolloids 23: 497-509. http://doi. org/10.1016/j.foodhyd.2008.03.008.
Nguyen, N. & Liu, J. 2013.
Fabrication and characterization of poly (vinyl alcohol)/ chitosan hydrogel
thin films via UV irradiation. European Polymer Journal 49: 4201-4211. http://
doi.org/10.1016/j.eurpolymj.2013.09.032.
Park, J., Kim, H., Choi,
J., Gwon, H., Shin, Y., Young, M., Lim, M., Khill, M.S. & Nho, Y. 2012. Effects of annealing and the addition
of PEG on the PVA based hydrogel by gamma ray. Radiation
Physics and Chemistry 81:
857-860. http://doi. org/10.1016/j.radphyschem.2012.02.005.
Park, K.R. & Nho, Y.C. 2003. Synthesis of PVA/PVP hydrogels having two-layer by radiation and
their physical properties.Radiation Physics and Chemistry 67: 361-365. http://doi. org/10.1016/S0969-806X(03)00067-7.
Park, S., Nah, J. &
Park, Y. 2011. pH-Dependent mode of antibacterial actions of low molecular
weight watersoluble chitosan (LMWSC) against various pathogens. Macromolecular
Research 19: 853-860. http://doi.
org/10.1007/s13233-011-0812-1.
Pasanphan, W., Rimdusit, P., Choofong,
S., Thananchai, P. & Nilsuwankosit, S. 2010. Systematic
fabrication of chitosan nanoparticle by gamma irradiation. Radiation
Physics and Chemistry 79: 1095-1102. http://doi.org/10.1016/j.radphyschem.2010.04.003.
Pollock, J.F. & Healy, K.E. 2010.
Mechanical and swelling characterization of poly ( N -isopropyl
acrylamide-comethoxy poly (ethylene glycol) methacrylate) sol – gels. Acta
Biomaterialia 6: 1307-1318. http://doi.org/10.1016/j. actbio.2009.11.027.
Pu, X., Wei, K. &
Zhang, Q. 2013. In
situ forming chitosan /hydroxyapatite rods reinforced via genipin
crosslinking. Materials Letters 94: 169-171. http://doi.org/10.1016/j. matlet.2012.12.009.
Riva, R., Ragelle, H., Rieux, des A.,
Duhem, N., Jerome, C. & Preat, V. 2011. Chitosan and
chitosan derivatives in drug delivery and tissue engineering. Advance
Polymer Science 244: 19-44. http://doi.org/10.1007/12.
Shameli, K., Ahmad, M.B., Zamanian,
A., Sangpour, P., Shabanzadeh, P., Abdollahi, Y. & Zargar, M. 2012. Green biosynthesis
of silver nanoparticles using Curcuma longa tuber powder. International
Journal of Nanomedicine 7: 5603-5610. http://doi.org/10.2147/IJN.S36786.
Simões, S., Figureueiras, A. &
Veiga, F. 2012. Modular hydrogels for drug delivery. Journal
of Biomaterials and Nanobiotechnology 3: 185-199.
Singh, B. & Pal, L. 2011. Radiation
crosslinking polymerization of sterculia polysaccharide – PVA – PVP
for making hydrogel wound dressings. International Journal of Biological Macromolecules 48: 501-510. http://doi.org/10.1016/j. ijbiomac.2011.01.013.
Sivaiah, K., Kumar, K.N., Naresh, V.
& Buddhudu, S. 2011. Structural and optical properties of Li+: PVP &
Ag+: PVP polymer films. Materials Sciences and Applications 2:
1688-1696. http://doi.org/10.4236/msa.2011.211225.
Soler, D.M., Rodriguez, Y.,
Correa, H., Moreno, A. & Carrizales, L. 2012. Pilot scale-up and shelf stability of
hydrogel wound dressings obtained by gamma radiation. Radiation Physics and
Chemistry 81: 1249-1253. http://doi.org/10.1016/j. radphyschem.2012.02.024.
Tahtat, D., Mahlous, M.,
Benamer, S., Khodja, A.N. & Youcef, S.L. 2012. Effect of molecular
weight on radiation chemical degradation yield of chain scission of γ
-irradiated chitosan in solid state and in aqueous solution. Radiation
Physics and Chemistry 81: 659-665. http://doi.org/10.1016/j. radphyschem.2012.02.036.
Tanuma, H., Saito, T.,
Nishikawa, K., Dong, T., Yazawa, K. & Inoue, Y. 2010. Preparation and characterization
of PEG-crosslinked chitosan hydrogel films with controllable swelling and enzymatic
degradation behavior. Carbohydrate Polymers 80: 260-265.
http://doi.org/10.1016/j.carbpol.2009.11.022.
Yang, C., Xu, L., Zhou, Y.,
Zhang, X., Huang, X. & Wang, M. 2010. A green fabrication approach of gelatin/CM-chitosan hybrid
hydrogel for wound healing. Carbohydrate Polymers 82: 1297-1305. http://doi.org/10.1016/j.carbpol.2010.07.013.
Yuan, Y., Chesnutt, B.M.,
Utturkar, G., Haggard, W.O., Yang, Y., Ong, J.L. & Bumgardner, J.D. 2007. The effect of
crosslinking of chitosan microspheres with genipin on protein release. Carbohydrate
Polymers 68: 561-567. http://doi.org/10.1016/j.carbpol.2006.10.023.
Zhang, D., Zhou, W., Wei, B., Wang, X.,
Tang, R., Nie, J. & Wang, J. 2015a. Carboxyl-modified poly (vinyl
alcohol)-crosslinked chitosan hydrogel films for potential wound dressing. Carbohydrate
Polymers 125: 189-199. http://doi.
org/10.1016/j.carbpol.2015.02.034.
Zhang, J., Han, J., Zhang, X., Jiang,
J., Xu, M. & Zhang, D. 2015b. Polymeric nanoparticles based on chitooligosaccharide
as drug carriers for co-delivery of all- trans -retinoic acid and paclitaxel. Carbohydrate
Polymers 129: 25-34. shttp://doi.
org/10.1016/j.carbpol.2015.04.036.
Zhao, L., Xu, L., Mitomo,
H. & Yoshii, F. 2006. Synthesis of pH-sensitive PVP / CM-chitosan hydrogels with improved
surface property by irradiation. Carbohydrate Polymers 64:
473-480. http://doi.org/10.1016/j.carbpol.2005.12.014.
*Corresponding author; email: maznah@nuclearmalaysia.gov.my
|