Sains Malaysiana 47(6)(2018): 1241–1249

http://dx.doi.org/10.17576/jsm-2018-4706-20

 

Dark Matter in the Central Region of NGC 3256

(Jirim Gelap di Rantau Tengah NGC 3256)

 

ISRAA ABDULQASIM MOHAMMED ALI1, CHORNG-YUAN HWANG2, ZAMRI ZAINAL ABIDIN1* & ADELE LAURIE PLUNKETT3

 

1Physics Department, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

2Institute of Astronomy, National Central University, 32001 Jhongli, Taiwan

 

3European Southern Observatory (ESO), Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago, Chile

 

Received: 12 December 2017/Accepted: 10 January 2018

 

ABSTRACT

We investigated the central mass distribution of the luminous infrared galaxy NGC 3256 at a distance of 35 Mpc by using CO(1-0) observations of the Atacama Large Millimeter and sub-millimeter Array (ALMA) and near-IR data of the Two Micron Sky Survey (2MASS). We found that there is a huge amount of invisible dynamical mass (4.48 × 1010 ) in the central region of the galaxy. The invisible mass is likely caused by some dark matter, which might have a cuspy dark matter profile. We note that this dark matter is difficult to explain with the conventional Modified Newtonian Dynamics (MOND) model, which is only applicable at a low acceleration regime, whereas the acceleration at the central region of the galaxy is relatively strong. Therefore, this discovery might pose a challenge to the conventional MOND models.

 

Keywords: Dark matter; evolution; galaxies; individual (NGC 3256)

 

ABSTRAK

Kami telah menjalankan kajian terhadap taburan jisim di kawasan pusat galaksi inframerah terang NGC 3256 pada jarak 35 Mpc dengan menggunakan cerapan CO(1-0) dari Atacama Large Millimeter dan sub-millimeter Array (ALMA) dan maklumat inframerah dekat daripada Two Micron Sky Survey (2MASS). Penemuan kami menunjukkan terdapat jumlah jisim dinamik ghaib yang besar (4.48 × 1010 ) di kawasan pusat galaksi. Jisim ghaib ini berkemungkinan besar merupakan jirim gelap, yang mempunyai profil 'cuspy'. Hal tersebut sukar diterangkan dengan model 'Modified Newtonian Dynamics' (MOND), yang hanya terpakai untuk kadar pecutan yang rendah, tetapi pecutan di kawasan pusat galaksi agak tinggi. Oleh yang demikian, penemuan ini mencabar model MOND konvensional.

 

Kata kunci: Evolusi; galaksi; individu (NGC 3256); jirim gelap

REFERENCES

Aalto, S., Booth, R.S., Johansson, L.E.B. & Black, J.H. 1991. Peculiar molecular clouds inNGC 3256? Astronomy & Astrophysics 247: 291-302.

Ade, P.A.R., Aghanim, N., Arnaud, M., Ashdown, M., Aumont, J., Baccigalupi, C., Banday, A., Barreiro, R., Bartlett, J., Bartolo, N. & Battaner, E. 2016. Planck 2015 results-XIII. Cosmological parameters. Astronomy & Astrophysics 594: A13.

Agüero, E. & Lipari, S. 1991. Physical considerations of the nuclear region of NGC 3256. Astrophysics and Space Science 175: 253-260.

Aguirre, A., Schaye, J. & Quataert, E. 2001. Problems for modified Newtonian dynamics in clusters and the Lyα forest? The Astrophysical Journal 561(2): 550.

Alonso-Herrero, A., Colina, L., Packham, C., Díaz-Santos, T., Rieke, G.H., Radomski, J.T. & Telesco, C.M. 2006. High spatial resolution T-ReCS mid-infrared imaging of luminous infrared galaxies. The Astrophysical Journal Letters 652: L83-L87.

Alonso-Herrero, A., Pereira-Santaella, M., Rieke, G.H., Diamond-Stanic, A.M., Wang, Y., Hernán-Caballero, A. & Rigopoulou, D. 2013. Local luminous infrared galaxies. III. co-evolution of black hole growth and star formation activity? The Astrophysical Journal 765: 78.

Alonso-Herrero, A., Pereira-Santaella, M., Rieke, G.H. & Rigopoulou, D. 2011. Local luminous infrared galaxies. II. Active galactic nucleus activity from spitzer/infrared spectrograph spectra. The Astrophysical Journal 744: 2.

Baan, W.A., Henkel, C., Loenen, A.F., Baudry, A. & Wiklind, T. 2008. Dense gas inluminous infrared galaxies. Astronomy & Astrophysics 477: 747-762.

Bauer, D., Buckley, J., Cahill-Rowley, M., Cotta, R., Drlica- Wagner, A., Feng, J.L., Funk, S., Hewett, J., Hooper, D., Ismail, A. & Kaplinghat, M. 2015. Dark matter in the coming decade: Complementary paths to discovery and beyond. Physics of the Dark Universe 7: 16-23.

Bell, E.F., McIntosh, D.H., Katz, N. & Weinberg, M.D. 2003. The optical and near-infrared properties of galaxies. I. Luminosity and stellar mass functions. The Astrophysical Journal Supplement Series 149: 289.

Binney, J. & Merrifield, M. 1998. Galactic Astronomy. New Jersey: Princeton University Press.

Bolatto, A.D., Wolfire, M. & Leroy, A.K. 2013. The CO-to-H2 conversion factor. Annual Review of Astronomy and Astrophysics 51: 207-268.

Bosma, A. 1981. 21-cm line studies of spiral galaxies. II. The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types. The Astronomical Journal 86: 1825-1846.

Bottema, R., Pestana, J.L., Rothberg, B. & Sanders, R.H. 2002. MOND rotation curves for spiral galaxies with Cepheid-based distances. Astronomy & Astrophysics 393: 453-460.

Casoli, F., Dupraz, C., Combes, F. & Kazes, I. 1991. CO in mergers. III-NGC 1614 and NGC 3256. Astronomy and Astrophysics 251: 1-10.

Dickman, R.L., Snell, R.L. & Schloerb, F.P. 1986. Carbon monoxide as an extragalactic mass tracer. The Astrophysical Journal 309: 326-330.

Domingue, D.L., Xu, C.K., Jarrett, T.H. & Cheng, Y. 2009. 2MASS/SDSS close major merger galaxy pairs. The Astrophysical Journal 695: 1559-1566.

English, J., Norris, R.P., Freeman, K.C. & Booth, R.S. 2003. NGC 3256: Kinematic anatomy of a merger. The Astronomical Journal 125: 1134-1149.

Faber, S.M. & Gallagher, J.S. 1979. Masses and mass-to-light ratios of galaxies. Annual Review of Astronomy and Astrophysic 17: 135-187.

Faber, S.M. & Lin, D.N.C. 1983. Is there nonluminous matter in dwarf spheroidal galaxies. The Astrophysical Journal 266: L17-L20.

Finlator, K., Ivezić, Ž., Fan, X., Strauss, M.A., Knapp, G.R., Lupton, R.H., Gunn, J.E., Rockosi, C.M., Anderson, J.E., Csabai, I. & Hennessy, G.S. 2000. Optical and infrared colors of stars observed by the two micron all sky survey and the sloan digital sky survey. The Astronomical Journal 120: 2615.

Hinz, J.L. & Rieke, G.H. 2006. Dynamical masses in luminous infrared galaxies. The Astrophysical Journal 646: 872-880.

Hughes, I. & Hase, T. 2010. Measurements and Their Uncertainties: A Practical Guide to Modern Error Analysis. Oxford: Oxford University Press.

Iocco, F., Pato, M. & Bertone, G. 2015. Evidence for dark matter in the inner milky way. Nature Physics 11: 245-248.

King, I.R. 1966. The structure of star clusters. III. Some simple dynamical models. The Astronomical Journal 71: 64.

Kochanek, C.S., White, M., Huchra, J., Macri, L., Jarrett, T.H., Schneider, S.E. & Mader, J. 2003. Clusters of galaxies in the local universe. The Astrophysical Journal 585: 161-181.

Koda, J., Sofue, Y., Kohno, K., Nakanishi, H., Onodera, S., Okumura, S.K. & Irwin, J.A. 2002. Nobeyama millimeter array CO (J= 1-0) observations of the Hα/radio lobe galaxy NGC 3079: Gas dynamics in a weak bar potential and central massive core. The Astrophysical Journal 573: 105-121.

Lira, P., Ward, M., Zezas, A., Alonso-Herrero, A. & Ueno, S. 2002. Chandra observations of the luminous infrared galaxy NGC 3256. Monthly Notices of the Royal Astronomical Society 330: 259-278.

Mateo, M. 1998. Dwarf galaxies of the Local Group. Annual Review of Astronomy and Astrophysics 36: 435-506.

Merloni, A., Heinz, S. & Matteo, T.D. 2003. A fundamental plane of black hole activity. Monthly Notices of the Royal Astronomical Society 345: 1057-1076.

Milgrom, M. 1998. Galaxy groups and modified dynamics. The Astrophysical Journal Letters 496: L89-L91.

Milgrom, M. 1983. A modification of the Newtonian dynamics-implications for galaxies. The Astrophysical Journal 270: 371-389.

McKee, C.F. & Zweibel, E.G. 1992. On the virial theorem for turbulent molecular clouds. The Astrophysical Journal 399: 551-562.

Mulroy, S.L., Smith, G.P., Haines, C.P., Marrone, D.P., Okabe, N., Pereira, M.J., Egami, E., Babul, A., Finoguenov, A. & Martino, R. 2014. LoCuSS: The near-infrared luminosity and weak-lensing mass scaling relation of galaxy clusters. Monthly Notices of the Royal Astronomical Society 443: 3309-3317.

Neff, S.G., Ulvestad, J.S. & Campion, S.D. 2003. Radio emission associated with ultraluminous x-ray sources in the galaxy merger NGC 3256. The Astrophysical Journal 599: 1043- 1048.

Riffel, R.A., Ho, L.C., Mason, R., Rodríguez-Ardila, A., Martins, L., Riffel, R., Diaz, R., Colina, L., Alonso-Herrero, A., Flohic, H. & Martin, O.G. 2014. Differences between CO-and calcium triplet-derived velocity dispersions in spiral galaxies: Evidence for central star formation? Monthly Notices of the Royal Astronomical Society 446: 2823-2836.

Roberts, M.S. & Whitehurst, R.N. 1975. The rotation curve and geometry of M31 at large galactocentric distances. The Astrophysical Journal 201: 327-346.

Roy, A.L., Goss, W.M., Mohan, N.R. & Anantharamaiah, K.R. 2005. Radio recombination lines from the starburst galaxy NGC 3256. Astronomy & Astrophysics 435: 831-837.

Rubin, V.C., Ford Jr., W.K. & Thonnard, N. 1980. Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605/R= 4kpc/to UGC 2885/R= 122 kpc. The Astrophysical Journal 238: 471-487.

Sakamoto, K., Aalto, S., Combes, F., Evans, A. & Peck, A. 2014. An infrared-luminous merger with two bipolar molecular outflows: ALMA and SMA observations of NGC 3256. The Astrophysical Journal 797: 90.

Sakamoto, K., Ho, P.T. & Peck, A.B. 2006. Imaging molecular gas in the luminous merger NGC 3256: Detection of high-velocity gas and twin gas peaks in the double nucleus. The Astrophysical Journal 644: 862-878.

Sanders, R.H. & Noordermeer, E. 2007. Confrontation of modified Newtonian dynamics with the rotation curves of early-type disc galaxies. Monthly Notices of the Royal Astronomical Society 379: 702-710.

Sanders, R.H. & Verheijen, M.A.W. 1998. Rotation curves of Ursa major galaxies in the context of modified Newtonian dynamics. The Astrophysical Journal 503: 97-108.

Sargent, A.I., Sanders, D.B. & Phillips, T.G. 1989. CO (2-1) emission from the interacting galaxy pair NGC 3256. The Astrophysical Journal 346: L9-L11.

Schombert, J. & Smith, A.K. 2012. The structure of galaxies I: Surface photometry techniques. Publications of the Astronomical Society of Australia 29: 174-192.

Skrutskie, M.F., Cutri, R.M., Stiening, R., Weinberg, M.D., Schneider, S., Carpenter, J.M., Beichman, C., Capps, R., Chester, T., Elias, J. & Huchra, J. 2006. The two micron all sky survey (2MASS). The Astronomical Journal 131: 1163-1183.

Solomon, P.M., Downes, D., Radford, S.J.E. & Barrett, J.W. 1997. The molecular interstellar medium in ultraluminous infrared galaxies. The Astrophysical Journal 478(1): 144-161.

Tan, A., Xiao, M., Cui, X., Chen, X., Chen, Y., Fang, D., Fu, C., Giboni, K., Giuliani, F., Gong, H. & Guo, X. 2016. Dark matter results from first 98.7 days of data from the PandaX-II experiment. Physical Review Letters 117: 121303.

Tian, Y. & Ko, C.M. 2016. Dynamics of elliptical galaxies with planetary nebulae in modified Newtonian dynamics. Monthly Notices of the Royal Astronomical Society 462: 1092-1100.

Tsai, A.L., Matsushita, S., Nakanishi, K., Kohno, K., Kawabe, R., Inui, T., Matsumoto, H., Tsuru, T.G., Peck, A.B. & Tarchi, A. 2009. Molecular superbubbles and outflows from the starburst galaxy NGC 2146. Publications of the Astronomical Society of Japan 61: 237-250.

van den Bosch, F.C. & Dalcanton, J.J. 2000. Semianalytical models for the formation of disk galaxies. II. Dark matter versus modified Newtonian dynamics. The Astrophysical Journal 534: 146-164.

Zhang, Z., Gilfanov, M. & Bogdán, Á. 2012. Dependence of the low-mass X-ray binary population on stellar age. Astronomy & Astrophysics 546: A36.

 

 

* Corresponding author; email: zzaa@um.edu.my

 

 

 

 

previous