Sains Malaysiana 47(6)(2018): 1241–1249
http://dx.doi.org/10.17576/jsm-2018-4706-20
Dark
Matter in the Central Region of NGC 3256
(Jirim Gelap
di Rantau Tengah NGC 3256)
ISRAA ABDULQASIM MOHAMMED ALI1, CHORNG-YUAN HWANG2, ZAMRI ZAINAL ABIDIN1* & ADELE LAURIE PLUNKETT3
1Physics
Department, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
2Institute
of Astronomy, National Central University, 32001 Jhongli, Taiwan
3European
Southern Observatory (ESO), Alonso de Cordova 3107, Vitacura, Casilla 19001,
Santiago, Chile
Received:
12 December 2017/Accepted: 10 January 2018
ABSTRACT
We investigated the central mass distribution of the luminous
infrared galaxy NGC 3256 at a distance of 35 Mpc by
using CO(1-0) observations of the Atacama Large Millimeter and
sub-millimeter Array (ALMA) and near-IR data
of the Two Micron Sky Survey (2MASS). We found that there is a
huge amount of invisible dynamical mass (4.48 × 1010 ) in the central region of the galaxy. The invisible mass is likely caused by
some dark matter, which might have a cuspy dark matter profile. We note that
this dark matter is difficult to explain with the conventional Modified
Newtonian Dynamics (MOND) model, which is only applicable
at a low acceleration regime, whereas the acceleration at the central region of
the galaxy is relatively strong. Therefore, this discovery might pose a
challenge to the conventional MOND models.
Keywords: Dark matter; evolution; galaxies; individual (NGC 3256)
ABSTRAK
Kami telah menjalankan kajian terhadap taburan jisim di kawasan pusat
galaksi inframerah terang NGC 3256 pada jarak 35 Mpc dengan
menggunakan cerapan CO(1-0) dari Atacama Large Millimeter
dan sub-millimeter Array (ALMA) dan maklumat inframerah dekat daripada
Two Micron Sky Survey (2MASS). Penemuan kami menunjukkan
terdapat jumlah jisim dinamik ghaib yang besar (4.48 × 1010 ) di kawasan pusat galaksi. Jisim
ghaib ini berkemungkinan besar merupakan jirim gelap, yang mempunyai
profil 'cuspy'. Hal tersebut sukar diterangkan dengan model
'Modified Newtonian Dynamics' (MOND), yang hanya terpakai untuk kadar pecutan yang rendah,
tetapi pecutan di kawasan pusat galaksi agak tinggi. Oleh yang demikian,
penemuan ini mencabar model MOND konvensional.
Kata kunci: Evolusi; galaksi; individu (NGC 3256); jirim gelap
REFERENCES
Aalto, S., Booth, R.S.,
Johansson, L.E.B. & Black, J.H. 1991. Peculiar molecular clouds inNGC 3256? Astronomy &
Astrophysics 247: 291-302.
Ade, P.A.R., Aghanim, N.,
Arnaud, M., Ashdown, M., Aumont, J., Baccigalupi, C., Banday, A., Barreiro, R.,
Bartlett, J., Bartolo, N. & Battaner, E. 2016. Planck 2015 results-XIII. Cosmological parameters. Astronomy & Astrophysics 594: A13.
Agüero, E. & Lipari, S. 1991. Physical considerations of the nuclear region of NGC 3256. Astrophysics
and Space Science 175: 253-260.
Aguirre, A., Schaye, J.
& Quataert, E. 2001. Problems
for modified Newtonian dynamics in clusters and the Lyα forest? The
Astrophysical Journal 561(2): 550.
Alonso-Herrero, A., Colina, L.,
Packham, C., Díaz-Santos, T., Rieke, G.H., Radomski, J.T. & Telesco, C.M.
2006. High spatial resolution T-ReCS mid-infrared imaging of
luminous infrared galaxies. The Astrophysical Journal Letters 652: L83-L87.
Alonso-Herrero, A., Pereira-Santaella,
M., Rieke, G.H., Diamond-Stanic, A.M., Wang, Y., Hernán-Caballero, A. &
Rigopoulou, D. 2013. Local
luminous infrared galaxies. III. co-evolution
of black hole growth and star formation activity? The Astrophysical Journal 765:
78.
Alonso-Herrero, A., Pereira-Santaella,
M., Rieke, G.H. & Rigopoulou, D. 2011. Local luminous infrared galaxies. II. Active galactic
nucleus activity from spitzer/infrared spectrograph spectra. The
Astrophysical Journal 744: 2.
Baan, W.A., Henkel, C., Loenen, A.F.,
Baudry, A. & Wiklind, T. 2008. Dense gas inluminous infrared galaxies. Astronomy &
Astrophysics 477: 747-762.
Bauer, D., Buckley, J., Cahill-Rowley, M., Cotta, R.,
Drlica- Wagner, A., Feng, J.L., Funk, S., Hewett, J., Hooper, D., Ismail, A.
& Kaplinghat, M. 2015. Dark matter in the coming decade: Complementary
paths to discovery and beyond. Physics of the Dark Universe 7: 16-23.
Bell, E.F., McIntosh, D.H., Katz, N.
& Weinberg, M.D. 2003. The optical and near-infrared properties of galaxies. I.
Luminosity and stellar mass functions. The Astrophysical Journal Supplement
Series 149: 289.
Binney, J. & Merrifield, M. 1998. Galactic Astronomy. New Jersey: Princeton University
Press.
Bolatto, A.D., Wolfire, M. & Leroy, A.K. 2013. The CO-to-H2 conversion factor. Annual
Review of Astronomy and Astrophysics 51: 207-268.
Bosma, A. 1981. 21-cm line studies of spiral galaxies. II. The distribution
and kinematics of neutral hydrogen in spiral galaxies of various morphological
types. The Astronomical Journal 86: 1825-1846.
Bottema, R., Pestana, J.L., Rothberg,
B. & Sanders, R.H. 2002. MOND
rotation curves for spiral galaxies with Cepheid-based distances. Astronomy
& Astrophysics 393: 453-460.
Casoli, F., Dupraz, C., Combes, F.
& Kazes, I. 1991. CO
in mergers. III-NGC 1614 and NGC 3256. Astronomy
and Astrophysics 251: 1-10.
Dickman, R.L., Snell, R.L. & Schloerb, F.P. 1986. Carbon monoxide as an extragalactic mass tracer. The
Astrophysical Journal 309: 326-330.
Domingue, D.L., Xu, C.K., Jarrett, T.H. & Cheng, Y.
2009. 2MASS/SDSS close major merger galaxy pairs. The Astrophysical Journal 695:
1559-1566.
English, J., Norris, R.P., Freeman, K.C. & Booth, R.S.
2003. NGC 3256: Kinematic anatomy of a merger. The Astronomical Journal 125:
1134-1149.
Faber, S.M. & Gallagher, J.S. 1979. Masses
and mass-to-light ratios of galaxies. Annual Review of Astronomy and
Astrophysic 17: 135-187.
Faber, S.M. & Lin, D.N.C. 1983. Is there nonluminous
matter in dwarf spheroidal galaxies. The
Astrophysical Journal 266: L17-L20.
Finlator, K., Ivezić, Ž., Fan, X., Strauss, M.A.,
Knapp, G.R., Lupton, R.H., Gunn, J.E., Rockosi, C.M., Anderson, J.E., Csabai,
I. & Hennessy, G.S. 2000. Optical and infrared colors of stars observed by
the two micron all sky survey and the sloan digital
sky survey. The Astronomical Journal 120: 2615.
Hinz, J.L. & Rieke, G.H. 2006. Dynamical masses in
luminous infrared galaxies. The Astrophysical Journal 646: 872-880.
Hughes, I. & Hase, T. 2010. Measurements and Their Uncertainties: A Practical Guide
to Modern Error Analysis. Oxford: Oxford University Press.
Iocco, F., Pato, M. & Bertone, G.
2015. Evidence for dark matter in the inner milky way. Nature Physics 11: 245-248.
King, I.R. 1966. The structure of star clusters. III. Some
simple dynamical models. The Astronomical Journal 71: 64.
Kochanek, C.S., White, M., Huchra, J., Macri, L., Jarrett,
T.H., Schneider, S.E. & Mader, J. 2003. Clusters of
galaxies in the local universe. The Astrophysical Journal 585:
161-181.
Koda, J., Sofue, Y., Kohno, K., Nakanishi, H., Onodera, S.,
Okumura, S.K. & Irwin, J.A. 2002. Nobeyama millimeter array CO (J= 1-0)
observations of the Hα/radio lobe galaxy NGC 3079: Gas dynamics in a weak
bar potential and central massive core. The Astrophysical Journal 573:
105-121.
Lira, P., Ward, M., Zezas, A., Alonso-Herrero, A. &
Ueno, S. 2002. Chandra observations of the luminous infrared
galaxy NGC 3256. Monthly Notices of the Royal Astronomical Society 330:
259-278.
Mateo, M. 1998. Dwarf galaxies of the Local Group. Annual
Review of Astronomy and Astrophysics 36: 435-506.
Merloni, A., Heinz, S. & Matteo,
T.D. 2003. A fundamental plane
of black hole activity. Monthly Notices of the Royal Astronomical
Society 345: 1057-1076.
Milgrom, M. 1998. Galaxy groups and modified dynamics. The
Astrophysical Journal Letters 496: L89-L91.
Milgrom, M. 1983. A modification of the
Newtonian dynamics-implications for galaxies. The Astrophysical
Journal 270: 371-389.
McKee, C.F. & Zweibel, E.G. 1992. On the virial theorem for turbulent
molecular clouds. The Astrophysical Journal 399: 551-562.
Mulroy, S.L., Smith, G.P., Haines, C.P., Marrone, D.P.,
Okabe, N., Pereira, M.J., Egami, E., Babul, A., Finoguenov, A. & Martino,
R. 2014. LoCuSS: The near-infrared luminosity and weak-lensing mass scaling relation
of galaxy clusters. Monthly Notices of the Royal Astronomical Society 443:
3309-3317.
Neff, S.G., Ulvestad, J.S. & Campion, S.D. 2003. Radio
emission associated with ultraluminous x-ray sources in the galaxy merger NGC
3256. The Astrophysical Journal 599: 1043- 1048.
Riffel, R.A., Ho, L.C., Mason, R., Rodríguez-Ardila, A.,
Martins, L., Riffel, R., Diaz, R., Colina, L., Alonso-Herrero, A., Flohic, H.
& Martin, O.G. 2014. Differences between CO-and calcium triplet-derived
velocity dispersions in spiral galaxies: Evidence for central star formation? Monthly
Notices of the Royal Astronomical Society 446: 2823-2836.
Roberts, M.S. & Whitehurst, R.N. 1975. The rotation curve and geometry of M31 at large galactocentric
distances. The Astrophysical Journal 201: 327-346.
Roy, A.L., Goss, W.M., Mohan, N.R.
& Anantharamaiah, K.R. 2005. Radio
recombination lines from the starburst galaxy NGC 3256. Astronomy &
Astrophysics 435: 831-837.
Rubin, V.C., Ford Jr., W.K. & Thonnard, N. 1980.
Rotational properties of 21 SC galaxies with a large range of luminosities and
radii, from NGC 4605/R= 4kpc/to UGC 2885/R= 122 kpc. The Astrophysical
Journal 238: 471-487.
Sakamoto, K., Aalto, S., Combes, F., Evans, A. & Peck,
A. 2014. An infrared-luminous merger with two bipolar molecular outflows: ALMA
and SMA observations of NGC 3256. The Astrophysical Journal 797: 90.
Sakamoto, K., Ho, P.T. & Peck, A.B. 2006. Imaging
molecular gas in the luminous merger NGC 3256: Detection of high-velocity gas
and twin gas peaks in the double nucleus. The Astrophysical Journal 644:
862-878.
Sanders, R.H. & Noordermeer, E. 2007. Confrontation of modified Newtonian dynamics with the rotation curves of
early-type disc galaxies. Monthly Notices of the Royal Astronomical Society 379:
702-710.
Sanders, R.H. & Verheijen, M.A.W. 1998. Rotation curves of Ursa major galaxies in the context
of modified Newtonian dynamics. The Astrophysical Journal 503: 97-108.
Sargent, A.I., Sanders, D.B. & Phillips, T.G. 1989. CO (2-1) emission from the interacting galaxy pair NGC 3256. The Astrophysical Journal 346: L9-L11.
Schombert,
J. & Smith, A.K. 2012. The structure of galaxies I: Surface photometry
techniques. Publications of the Astronomical Society of Australia 29:
174-192.
Skrutskie, M.F., Cutri, R.M., Stiening, R., Weinberg, M.D.,
Schneider, S., Carpenter, J.M., Beichman, C., Capps, R., Chester, T., Elias, J.
& Huchra, J. 2006. The two micron all sky survey (2MASS). The Astronomical Journal 131: 1163-1183.
Solomon, P.M., Downes, D., Radford, S.J.E. & Barrett,
J.W. 1997. The molecular interstellar medium in
ultraluminous infrared galaxies. The Astrophysical Journal 478(1):
144-161.
Tan, A., Xiao, M., Cui, X., Chen, X., Chen, Y., Fang, D.,
Fu, C., Giboni, K., Giuliani, F., Gong, H. & Guo, X. 2016. Dark matter results from first 98.7 days of data from the PandaX-II experiment. Physical Review Letters 117: 121303.
Tian,
Y. & Ko, C.M. 2016. Dynamics of elliptical galaxies with planetary nebulae
in modified Newtonian dynamics. Monthly Notices of the Royal Astronomical
Society 462: 1092-1100.
Tsai,
A.L., Matsushita, S., Nakanishi, K., Kohno, K., Kawabe, R., Inui, T.,
Matsumoto, H., Tsuru, T.G., Peck, A.B. & Tarchi, A. 2009. Molecular
superbubbles and outflows from the starburst galaxy NGC 2146. Publications
of the Astronomical Society of Japan 61: 237-250.
van den Bosch, F.C. & Dalcanton, J.J.
2000. Semianalytical models for the formation of disk galaxies. II. Dark matter
versus modified Newtonian dynamics. The Astrophysical Journal 534:
146-164.
Zhang,
Z., Gilfanov, M. & Bogdán, Á. 2012. Dependence of the
low-mass X-ray binary population on stellar age. Astronomy &
Astrophysics 546: A36.
*
Corresponding author; email: zzaa@um.edu.my
|