Sains Malaysiana 47(7)(2018): 1359–1367

http://dx.doi.org/10.17576/jsm-2018-4707-02

 

The Optimization of RBD Palm Oil Epoxidation Process using D-Optimal Design

(Pengoptimuman Proses Pengepoksidaan Minyak Sawit RBD menggunakan Reka Bentuk

D-Optimum)

 

NURAZIRA MOHD NOR, DARFIZZI DERAWI & JUMAT SALIMON*

 

School of Chemical Science and Food Technology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 5 August 2017/Accepted: 25 February 2018

 

 

ABSTRACT

The epoxidation process of RBD palm oil was carried out using in situ generated performic acid. The effect of various process variables such as the formic acid towards hydrogen peroxide mole ratio, the reaction temperature and the reaction time were optimized by using response surface methodology (RSM). The D-optimal design was used to evaluate the influence of process variables and their interaction in order to obtain the process optimum conditions. The results showed that the optimum conditions of the epoxidation process were at 5.91 mole ratio of formic acid towards 3.60 mole of hydrogen peroxide, reaction temperature of 40ºC and reaction time of 2.55 h. At the optimum condition, the epoxidised RBD palm oil (EPO) yield was 86% with oxirane oxygen content (OOC) of 3.46%. The results showed in good agreement with the predicted values from the RSM model.

 

Keywords: D-optimal design; epoxidation; epoxidised RBD palm oil; optimization

 

ABSTRAK

Proses pengepoksidaan minyak sawit RBD telah dijalankan menggunakan asid performik terjana secara in-situ. Kesan pelbagai proses pemboleh ubah seperti nisbah mol asid formik terhadap hidrogen peroksida, suhu tindak balas dan masa tindak balas telah dioptimumkan dengan menggunakan kaedah permukaan respons (RSM). Reka bentuk D-optimum telah digunakan untuk menilai pengaruh dan interaksi pelbagai pemboleh ubah proses untuk mendapatkan keadaan proses yang optimum. Keputusan kajian menunjukkan bahawa keadaan optimum proses pengepoksidaan diperoleh pada nisbah 5.91 mol asid formik terhadap 3.60 mol hidrogen peroksida, suhu tindak balas pada 40ºC dan masa tindak balas selama 2.55 jam. Pada keadaan optimum, hasil minyak sawit terepoksida (EPO) adalah sebanyak 86% dengan nilai kandungan oksigen oksiran (OOC) sebanyak 3.46%. Keputusan kajian menunjukkan keputusan yang menyamai nilai-nilai yang diramalkan daripada model RSM.

 

Kata kunci: Minyak sawit RBD; pengepoksidaan; pengoptimuman; reka bentuk D-optimum

REFERENCES

Adhvaryu, A., Liu, Z. & Erhan, S.Z. 2005. Synthesis of novel alkoxylated triacylglycerols and their lubricant base oil properties. Ind. Crops Prod. 21: 113-119.

Aziz, N.A.M., Yunus, R., Rashid, U. & Syam, A.M. 2014. Application of response surface methodology (RSM) for optimizing the palm-based pentaerythritol ester synthesis. Industrial Crops and Products 62: 305-312.

Borugadda, V.B. & Goud, V.V. 2015. Response surface methodology for optimization of bio lubricant basestock synthesis from high free fatty acids castor oil. Energy Science & Engineering 3(4): 371-383.

Borugadda, V.B. & Goud, V.V. 2014. Synthesis of waste cooking oil epoxide as a bio- lubricant base stock: Characterization and optimization study. J. Bioproc. Eng. Bioref. 3: 57-72.

Borugadda, V.B. & Goud, V.V. 2013. Comparative studies of thermal, oxidative and low temperature properties of waste cooking oil and castor oil. J. Renew. Sustain. Energy 5: 063104.

Derawi, D. & Salimon, J. 2016. Sintesis sebatian hidroksi-eter minyak sawit olein. Sains Malaysiana 45(5): 817-823.

Derawi, D., Salimon, J. & Ahmed, W.A. 2014. Preparation of epoxidized palm olein as renewable material by using peroxy acids. The Malaysian Journal of Analytical Sciences 18(3): 584-591.

Dinda, S., Patwardhan, A.V., Goud, V.V. & Pradhan, N.C. 2008. Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids. Bioresour. Technol. 99: 3737-3744.

El-Adly, R.A., Shoaib, A.M., Enas, A.I. & Modather, F. 2014. Optimum operating conditions for epoxidation reaction of Jojoba and castor oils. Int. Journal of Engineering Research and Applications 4(3): 816-822.

Erhan, S.Z., Sharma, B.K. & Perez, J.M. 2006. Oxidation and low temperature stability of vegetable oil-based lubricants. Ind. Crops Prod. 24: 292-299.

Goud, V.V., Patwardhan, A.V., Dinda, S. & Pradhan, N.C. 2007. Kinetics of epoxidation of Jatropha oil with peroxyacetic and peroxyformic acid catalysed by acidic ion exchange resin. Chemical Engineering Science 62: 4065-4076.

Goud, V.V., Patwardhan, A.V. & Pradhan, N.C. 2006. Studies on the epoxidation of mahua oil (Madhumica indica) by hydrogen peroxide. Bioresource Technology 97: 1365-1371.

Gunstone, F.D. 2004. The Chemistry of Oils and Fats: Sources, Composition Properties and Uses. London: Blackwell Publishing Ltd.

Hoang, T.T.K. & Kim, II. 2015. Epoxidation and ring-opening of palm oil to produce high functionality polyols. Australia Journal of Basic and Applied Sciences 9(8): 89-93.

Joseph, R., Madhusoodhanan, K.N., Alex, R., Varghese, S., George, K.E. & Kuriakose, B. 2014. Studies on epoxidised rubber seed oil as secondary plasticiser/stabiliser for polyvinyl chloride. Plastics Rubber and Composites 33(5): 217-222.

Kotwal, M., Kumar, A. & Darbha, S. 2013. Three- dimensional, mesoporous titanosilicates as catalysts for producing biodiesel and biolubricants. J. Mol. Catal. A. Chem. 377: 65-73.

Lathi, P.S. & Mattiasson, B. 2007. Green approach for the preparation of biodegradable lubricant base stock from epoxidised vegetable oil. Applied Catalysis B: Environmental 69: 207-212.

Manivannan, P. & Rajasimman, M. 2011.Optimization of process parameters for the osmotic dehydration of beetroot in sugar solution. J. Food Process Eng. 34: 804-825.

Milchert, E. & Smagowicz, A. 2009. The influence of reaction parameters on the epoxidation of rapeseed oil with peracetic acid. J. Am. Oil Chem. Soc. 86: 1227-1233.

Moser, B.R. & Erhan, S.Z. 2007. Preparation and evaluation of a series of α-hydroxy ethers from 9, 10-Epoxystreates. Eur. J. Lipid Sci. Technol. 109: 206-213.

Mungroo, R., Pradhan, N.C., Goud, V.V. & Dalai, A.K. 2008. Epoxidation of canola oil with hydrogen peroxide catalyzed by acidic ion exchange resin. J. Am. Oil Chem. Soc. 85: 887-896.

Nirmal, V.P. & Dineshbabu, D. 2015. Performance and emission of Pongamia pinnata oil as a lubricant in diesel engine. International Journal of Innovative Research in Science, Engineering and Technology 4(2): 435-441.

Njoku, P.C., Egbukole, M.O. & Enenebeaku, C.K. 2010. Physio-chemical characteristics and dietary metal levels of oil from Elaeis guineensis species. Pakistan Journal of Nutrition 9(2): 137-140.

Rafiee-Moghaddam, R., Salimon, J., Jelas-Haron, M.D., Jahangirian, H., Shah Ismail, M.H., Hosseini, S. & Rezayi, M. 2014. Lipase epoxidation optimizing of Jatropha curcas oil using perlauric acid. Digest Journal of Nanomaterials and Biostructures 9(3): 1159-1169.

Razali, N., Mootabadi, H., Salamatinia, B., Lee, K.T. & Abdullah, A.Z. 2010. Optimization of process parameters for alkaline-catalysed transesterification of palm oil using response surface methodology. Sains Malaysiana 39(5): 805-809.

Salimon, J., Abdullah, B.M. & Salih, N. 2016. Optimization of the oxirane ring opening reaction in biolubricant base oil production. Arabian Journal of Chemistry 9: 1053-1058.

Salimon, J., Ahmed, W.A., Salih, N., Yarmo, M.A. & Derawi, D. 2015. Lubricity and tribological properties of dicarboxylic acids and oleyl alcohol based esters. Sains Malaysiana 44(3): 405-412.

Salimon, J., Salih, N. & Yousif, E. 2011. Chemically modified biolubricant basestocks from epoxidized oleic acid: Improved low temperature properties and oxidative stability. Journal of Saudi Chemical Society 15: 195-201.

Salimon, J., Dina Azleema, M.N., Nazriwati, A.T., Mohd Firdaus, M.Y. & Noraisah, A. 2010. Fatty acid composition and physicochemical properties of Malaysian castor bean Ricinus communis L. seed oil. Sains Malaysiana 39(5): 761-764.

Salimon, J. & Salih, N. 2009. Substituted esters of octadecanoic acid as potential biolubricants. European Journal of Scientific Research 31(2): 273-279.

Saremi, K., Tabarsa, T., Shakeri, A. & Babanalbandi, A. 2012. Epoxidation of soybean oil. Annals of Biological Research 3(9): 4254-4258.

Sharma, B.K., Perez, J.M. & Erhan, S.Z. 2007. Soybean oil-based lubricants: A search for synergistic antioxidants. Energy Fuels 21: 2408-2414.

Singh, C.P. & Chhibber, V.K. 2013. Chemical modification in karanja oil for biolubricant industrial applications. J. Drug Deliv. Therapeutics 3: 117-122.

Suarez, P.A.Z., Perreira, M.S.C., Doll, K.M., Sharma, B.K. & Erhan, S.Z. 2009. Epoxidation of ethyl oleate using heterogeneous catalyst. Ind. Eng. Chem. Res. 48: 3268-3270.

Tabrizi, S.A.H. & Nassaj, E.T. 2011. Modeling and optimization of densification of nanocrystalline Al2O3 powder prepared by a sol–gel method using response surface methodology. J. Sol-Gel. Sci. Technol. 57: 212-220.

Wu, X., Zhang, X., Yang, S., Chen, H. & Wang, D. 2000. The study of epoxidized rapeseed oil used as a potential biodegradable lubricant. JAOCS 77: 561-563.

 

 

*Corresponding author; email: jumat@ukm.edu.my

 

 

previous