Sains Malaysiana 47(7)(2018): 1369–1378
http://dx.doi.org/10.17576/jsm-2018-4707-03
Predicting
Potential Rastrelliger kanagurta Fish Habitat using MODIS
Satellite Data and GIS Modeling:
A Case Study of Exclusive Economic Zone, Malaysia
(Peramalan
Potensi Habitat Ikan Rastrelliger kanagurta menggunakan Data
Satelit MODIS dan Pemodelan GIS:
Kajian Kes di Zon Ekonomi Eksklusif, Malaysia)
SHAARI, N.R.
& MUSTAPHA, M.A.*
School of Environmental Science and
Natural Resources, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor Darul Ehsan, Malaysia
Received: 14 September 2017/Accepted: 3
March 2018
ABSTRACT
Remote sensing and GIS are
robust tools in detection of fishing grounds which is important in providing
fish sustainability for human being. This recent tool allows fishing grounds
detection at minimal cost and optimizes effort. The objectives of this study
were to investigate the relationship between R. kanagurta fishing
grounds with environmental factors and to determine its potential fishing
grounds. MODIS derived satellite data of Chl-a and sea surface
temperature (SST) and fisheries catch data of 2008 and 2009 were
analyzed using suitability index (SI) and generalized additive
model (GAM) in the Exclusive Economic Zone (EEZ)
off the East Coast of Peninsular Malaysia. Distribution of R. kanagurta was
associated with preferred range of 0.20 to 0.30 mg/m3 for
Chl-a and 29 to 30°C for SST. GAM indicated
that these parameters influenced fish distribution (p<0.001). Potential
fishing ground maps derived from the SI and GAM model
indicated accuracy at 75% with kappa of 0.7 and accuracy at 87.6% with kappa of
0.8, respectively. This study indicated the capability of GAM as
an exploratory tool to map the potential fishing grounds of R. kanagurta in
the EEZ waters.
Keywords: Fisheries spatial
prediction; generalized additive model; MODIS; suitability index model
ABSTRAK
Penderiaan jauh dan GIS merupakan
pendekatan yang digunakan untk mengesan kawasan tangkapan ikan yang
sangat penting dalam memastikan kelangsungan ikan untuk keperluan
manusia. Ia membantu dalam penentuan kawasan tangkapan ikan dengan
kos yang minimum dan usaha yang optimum. Objektif dalam kajian ini
adalah untuk mengkaji perhubungan antara kawasan tangkapan ikan
R. kanagurta dengan faktor persekitaran dan
menentukan kawasan potensi tangkapan ikan. Data satelit Klorofil-a
dan suhu permukaan laut (SPL) yang diperoleh daripada MODIS
dan juga data-data ikan bagi tahun 2008 dan 2009 dianalisis
menggunakan indeks kesesuaian (SI) dan model aditif umum (GAM)
di kawasan Zon Ekonomi Eksklusif (ZEE) pantai timur Semenanjung
Malaysia. Keputusan kajian mendapati taburan ikan R. kanagurta
berasosiasi dengan julat kesesuaian antara 0.20 hingga 0.30 mg/m3 bagi
Klorofil-a dan 29 hingga 30°C bagi SPL. GAM menunjukkan
parameter ini mempengaruhi taburan ikan (p<0.001). Peta
kawasan potensi tangkapan ikan yang diperoleh daripada Indeks Kesesuaian
(SI)
dan model GAM menunjukkan ketepatan pada 75% masing-masing dengan
Kappa 0.7 dan ketepatan 87.6% dengan kappa 0.8. Kajian ini menunjukkan
kebolehan GAM sebagai kaedah dalam penentuan kawasan potensi tangkapan
ikan R. kanagurta di perairan ZEE.
Kata
kunci: Model aditif umum; model indeks kesuaian; MODIS;
ramalan reruang perikanan
REFERENCES
Akhir, M.F.
2012. Surface circulation and temperature distribution of Southern South China
Sea from global ocean model (OCCAM). Sains Malaysiana 41(6): 701-714.
Akhir, M.F.,
Zakaria, N.Z. & Tangang, F. 2014. Intermonsoon variation of physical
characteristics and current circulation along the east coast of Peninsular
Malaysia. International Journal of Oceanography 2014: 1-9.
Andrade,
H.A. & Garcia, C.A.E. 1999. Skipjack tuna fishery in relation to sea
surface temperature off the southern Brazilian Coast. Fisheries Oceanography 8(4): 245-254.
Chandran,
R.V., Jeyaram, A., Jayaraman, V., Manoj, S., Rajitha, K. & Mukherjee, C.K.
2009. Prioritization of satellite derived potential fishery grounds: An
analytical hierarchical approach-based model using spatial and non-spatial
data. International Journal of Remote Sensing 30(17): 4479-4491.
Checkley,
D.M., Dotson, R.C. & Griffith, D.A. 2000. Continuous, underway sampling of
eggs of Pacific sardine (Sardinops sagax) and northern anchovy (Engraulis
mordax) in spring 1996 and 1997 off southern and central California. Deep
Sea Research Part II 47: 1139-1155.
Daryabor,
F., Tangang, F. & Juneng, L. 2014. Simulation of southwest monsoon current
circulation and temperature in the east coast of Peninsular Malaysia. Sains
Malaysiana 43(3): 389-398.
Fox, M.F.,
Kester, D.R. & Yoder, J.A. 2005. Spatial and temporal distributions of
surface temperature and chlorophyll in the Gulf of Maine during 1998 using
SeaWiFS and AVHRR imagery. Marine Chemistry 97: 104-123.
Hastie, T.J.
& Tibshirani, R.J. 1990. Generalized Additive Models. London:
Chapman & Hall.
Lanz, E.,
Manuel, N.M., Juana, L.M. & Dworak, J.A. 2009. Small pelagic fish catches
in the Gulf of California associated with sea surface temperature and chlorophyll. CalCOFI Report 50: 134-146.
Lau, K.M.,
Wu, H.T. & Yang, S. 1998. Hydrologic processes associated with the first
transition of the Asian Summer Monsoon: A pilot satellite study. Bulletin
American Meteorological Society 79: 1871-1882.
Maddock, I.
1999. The importance of physical habitat assessment for evaluating river
health. Freshwater Biology 41: 373-391.
Maged, M.
2009. Linear algorithm for salinity distribution modelling from MODIS data. Proceedings
of Geoscience and Remote Sensing Symposium, Cape Town, South Africa.
Mustapha,
A.M., Chan, Y.L. & Lihan, T. 2010. Mapping of potential fishing grounds of Rastrelliger
kanagurta (Cuvier, 1817) using satellite images. Proceedings of Map Asia
& ISG 2010, July 2010, Kuala Lumpur, Malaysia.
Nurdin, S.,
Lihan, T. & Mustapha, A.M. 2012. Mapping of potential fishing grounds of Rastrelliger
kanagurta (Cuvier, 1816) in the Archipelagic Waters of Spermonde Indonesia
Using Satellite Images. Proceedings of Malaysia Geospatial Forum, March
2013, Melaka, Malaysia.
Nurdin, S.,
Mustapha, M.A., Lihan, T. & Ghaffar, M.A. 2015. Determination of potential
fishing grounds of Rastrelliger kanagurta using satellite remote sensing
and GIS technique. Sains Malaysiana 44(2): 225-232.
O’Reilly,
J.E., Maritorena, S., Mitchell, B.G., Siegel, D.A., Carder, K.L., Garver, S.A.,
Kahru, M. & McClain, C.R. 1998. Ocean color chlorophyll algorithms for
SeaWiFS. Journal of Geophysical Research 103: 24937-24953.
Palacios,
D.M., Bograd, S.J., Foley, D.G. & Scwing, F.B. 2006. Oceanographic
characteristics of biological hot spots in the North Pacific: A remote sensing
perspective. Deep-Sea Research Part II 53: 250-269.
Rajapaksha,
J.K., Samarakoon, L. & Gunathilaka, A.A.J.K. 2013. Environmental
preferences of Yellowfin Tuna in the Northeast Indian Ocean: An application of
satellite data to longline Catches. International Journal of Fisheries and
Aquatic Sciences 2(4): 72-80.
Razib, N.A.
& Mustapha, M.A. 2013. Spatial distribution of Rastrelliger kanagurta (cuvier
1817) in the South China Sea exclusive economic zone (eez). UKM-FST
Postgraduate Colloqium 2013, American Institute of Physics Conference
Proceedings, July 2013, Bangi, Malaysia.
Saadon, M.N.
& Camerlengo, A. 1994. Interannual and seasonal variability of the mixed
layer depth of the South China Sea. Paper Read at National Conference on
Climate Change. pp. 141-151.
Sachoemar, S.I.T.,
Yanagi, N., Hendiarti, M., Sadly & Meliani, F. 2010. Seasonal variability
of sea surface chlorophyll-a and abundance of pelagic fish in Lampung Bay,
Southern Coastal Area of Sumatra, Indonesia. Coastal Marine Science 34:
82-90.
Santos, A.M.P. 2000. Fisheries
oceanography using satellite and airborne remote sensing methods: a review. Fisheries
Research 49: 1-20.
Selvin, J. & Lipton, A.P. 2012.
Impact of environmental variables on pelagic fish landings: Special emphasis on
Indian oil sardine off Tiruchendur coast, Gulf of Mannar. Journal of
Oceanography and Marine Science 3(3): 56-67.
Shaari, F. & Mustapha, M.A. 2017.
Factors influencing the distribution of chl-a along coastal waters of East
Peninsular Malaysia. Sains Malaysiana 46(8): 1191-1200.
Solanki, H.U., Dwivedi, R.M., Nayak,
S.R., Naik, S.K., John, M.E. & Somvanshi, V.S. 2005. Cover: Application of
remotely sensed closely coupled biological and physical process for marine
fishery resources exploration. International Journal of Remote Sensing 26(10):
2029-2034.
Nazmi, S.M., Mustapha, A.M. & Lihan,
T. 2013. Satellite derived measurements of coastal water chlorophyll-a variability. World Applied Sciences Journal 21(6): 879-887.
Terrel, J.W. 1984. Proceedings of a
Workshop on Fish Habitat Suitability Index Models. US Fish and Wildlife
Service Biological Report 85(6): 1-393.
Vasconcelos, R.P., Le Pape, O., Costa,
M.J. & Cabral, H.N. 2013. Predicting estuarine use patterns of juvenile
fish with generalized linear models. Estuarine, Coastal and Shelf Science 120:
64-74.
Wakeley, J.S. 1988. A method to create
simplified versions of existing Habitat Suitability Index (HSI) models.
Environmental Management 1: 79-83.
Walton, C.C., Pichel, W.G., Sapper, J.F.
& May, D.A. 1998. The development and operational application of nonlinear
algorithms for the measurement of sea surface temperatures with the NOAA
polar-orbiting environmental satellites. Journal of Geophysical Research 103(C12):
27999-28012.
Wang, W., Zhou, C., Shao, Q. & Mulla,
D.J. 2010. Remote sensing of sea surface temperature and Chlorophyll-a:
Implications for squid fisheries in the north-west Pacific Ocean. International
Journal of Remote Sensing 31(17-18): 4515-4530.
Xian, T., Sun, L., Yang, Y. & Fu, Y.
2012. Monsoon and eddy forcing of Chlorophyll-a variation in the
northeast South China Sea. International Journal of Remote Sensing 33(23):
7431-7443.
Yee, T.W. & Mitchell, N.D. 1991.
Generalized additive models in plant ecology. Journal of Vegetation Science 2:
587-602.
Yu, W., Chen, X., Yi, Q., Chen, Y. &
Zhang, Y. 2015. Variability of suitable habitat of western winter-spring cohort
for neon flying squid in the northwest pacific under anomalous environments. PLoS
ONE 10(4): e0122997.
Zainuddin, M., Saitoh, K. & Saitoh,
S. 2004. Detection of potential fishing ground for albacore tuna using synoptic
measurements of ocean color and thermal remote sensing in the Northwestern
North Pacific. Geophysical Research Letters 31: L20311.
Zainuddin, M., Kiyofuji, H., Saitoh, K.
& Saitoh, S. 2006. Using multi-sensor satellite remote sensing and catch
data to detect ocean hot spots for albacore (Thunnus alalunga) in the
Northwestern North Pacific. Deep Sea Research Part II: Topical
Studies in Oceanography 53(3-4): 419-431.
Zainuddin, M., Saitoh, K. & Saitoh,
S. 2008. Albacore (Thunnus alalunga) fishing ground in relation to
oceanographic conditions in the western North Pacific Ocean using remotely
sensed satellite data. Fisheries Oceanography 17: 61-73.
Zainuddin, M. 2011. Skipjack Tuna in
relation to sea surface temperature and Chlorophyll-a concentration of
Bone Bay using remotely sensed satellite data. Jurnal Ilmu dan Teknologi
Kelautan Tropis 3(1): 82-90.
*Corresponding author; email: muzz@ukm.edu.my
|