Sains Malaysiana 47(8)(2018): 1693–1700
http://dx.doi.org/10.17576/jsm-2018-4708-08
Responses
of Four Citrus Plants to Phytophthora-Induced Root Rot
(Tindak
Balas Empat Tumbuhan Sitrus kepada Reput Akar Diinduksi dengan Phytophthora)
LI TIAN1, QIANG-SHENG WU1*, KAMIL KUČA2 & MOHAMMED MAHABUBUR RAHMAN3
1College of
Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
2Department of
Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003m
Czech Republic
3Brix' N Berries, Leduc,
Alberta, Canada
Received: 2 March 2018/Accepted: 4 April 2018
ABSTRACT
China is one of the largest citrus producers in Asia, where Phytophthora parasitica infection
has become the major threat in sustaining long term citrus production.
The proposed study examined the effects of P. parasitica on
Citrus junos, C. limon, C. tangerina and Poncirus
trifoliata to evaluate the resisted rootstock to Phytophthora
root rot. P. parasitica infection notably decreased plant
growth, root morphology and activities of pathogenesis-related proteins
(PRs) in C. limon and C.
tangerina. Root β-1,3-glucanase, chitinase and phenylalanine
ammonialyase activities significantly increased in C. junos
and P. trifoliata after infection with P. parasitica.
P. parasitica infection notably decreased root salicylic
acid concentrations in C. limon, C. tangerina and
P. trifoliata, while increasing it in C. junos. An
opposite trend was observed in root jasmonic acid levels after infection
with P. parasitica, relative to root salicylic acid. Root
nitric oxide and calmodulin concentrations were significantly increased
in P. parasitica-infected C. junos, C. tangerina
and P. trifoliata, while C. limon exhibited a decrease.
These results demonstrated that citrus species like C. junos
and P. trifoliata displayed a much higher resistance to
Phytophthora-induced root rot, and C. limon and C.
tangerina showed a comparatively lower degree of resistance.
Keywords: Citrus junos;
pathogenesis-related protein; Phytophthora parasitica; Poncirus
trifoliata
ABSTRAK
Negara China ialah salah sebuah negara pengeluar sitrus terbesar
di Asia dengan jangkitan Phytophthora
parasitica telah menjadi ancaman utama dalam mengekalkan pengeluaran
sitrus berjangka panjang. Kajian yang dicadangkan untuk mengkaji
kesan P. parasitica pada Citrus junos, C. limon,
C. tangerina dan Poncirus trifoliata bagi menilai
akar umbi yang ditentang terhadap reput akar Phytophthora.
Jangkitan P. parasitica terutamanya menurunkan pertumbuhan
tumbuhan, morfologi akar dan aktiviti protein yang berkaitan patogenesis
(PR) pada C. limon dan C. tangerina. Akar β-1,3-glukanase,
kitinase and fenilalanina ammonia-liase meningkat dengan ketara
pada C. junos dan P. trifoliata selepas jangkitan
P. parasitica. P. parasitica terutamanya menurunkan
kepekatan asid salisilik akar dalam C. limon, C. tangerina
dan P. trifoliata manakala meningkatkannya dalam C.
junos. Tren yang bertentangan telah diperhatikan pada peringkat
asid jasmonik akar selepas jangkitan dengan P. parasitica berbanding
dengan asid salisilat akar. Kepekatan nitrik oksida dan kalmodulin
akar meningkat dengan ketara pada P. parasitica yang dijangkiti
C. junos, C. tangerina dan P. trifoliata manakala
C. limon menunjukkan suatu penurunan. Keputusan ini menunjukkan
bahawa spesies sitrus seperti C. junos dan P. trifoliata
menunjukkan rintangan yang lebih tinggi terhadap reput akar diinduksi
dengan Phytophthora serta C. limon dan C. tangerina
menunjukkan tahap rintangan yang agak rendah.
Kata kunci: Citrus junos; Phytophthora parasitica; Poncirus trifoliata;
protein yang berkaitan pathogenesis
REFERENCES
Bari, R. & Jones, J.D. 2009. Role of plant hormones in
plant defence responses. Plant Molecular Biology 69(4): 473-488.
Bonnet, J., Danan, S., Boudet, C., Barchi, L., Sage-Palloix,
A. & Caromel, B. 2007. Are the polygenic architectures of resistance of Phytophthora
capsici and P. parasitica independent in pepper? Theoreticao
& Appied Genetic 115(2): 253-264.
Davis, R.M. & Menge, J.A. 1980. Influence of Glomus
fasciculatus and soil phosphorus on Phytophthora root rot of citrus. Phytopathology 70(5): 447-452.
Dixon, R.A., Achnine, L., Kota, P., Liu, C.J., Reddy, M.S.
& Wang, L. 2002. The phenylpropanoid pathway and plant defence-a genomics
perspective. Molecular Plant Pathology 3(5): 371-390.
Esquerré-Tugayé, M.T., Boudart, G. & Dumas, B. 2000.
Cell wall degrading enzymes, inhibitory proteins, and oligosaccharides
participate in the molecular dialogue between plants and pathogens. Plant
Physiology and Biochemistry 38(1): 157- 163.
Glazebrook, J. 2001. Genes controlling expression of defense
responses in Arabidopsis-2001 status. Current Opinion in Plant Biology 4(4):
301-308.
Gray, M.A., Hao, W., Forster, H. & Adaskaveg, J.E. 2017.
Effect of new Oomycete-specific fungicides on tree health, fruit yields and Phytophthora root rot of citrus. Phytopathology 107: 186.
Hu, N., Tu, X.R., Li, K.T., Ding, H., Li, H., Zhang, H.W.,
Tu, G.Q. & Huang, L. 2017. Changes in protein content and chitinase and
β-1,3-glucanase activities of rice with blast resistance induced by
Ag-antibiotic 702. Plant Diseases and Pests 8(4): 33-36.
Kim, D.S. & Hwang, B.K. 2014. An important role of the
pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic
acid-dependent signalling of the defence response to microbial pathogens. Journal
of Experimental Botany 65(9): 2295- 2306.
Kim, M.C., Chung, W.S., Yun, D.J. & Cho, M.J. 2009.
Calcium and calmodulin-mediated regulation of gene expression in plants. Molecular
Plant 2(1): 13-21.
Klarzynski, O., Plesse, B. & Joubert, J.M. 2000. Linear
β-1,3- glucans are elicitors of defense responses in tobacco. Plant
Physiology 124: 1027-1037.
Latijnhouwers, M., De Wit, P.J. & Govers, F. 2003.
Oomycetes and fungi: Similar weaponry to attack plants. Trends in
Microbiology 11(10): 462-469.
Li, Y.Z., Zheng, X.H., Tang, H.L., Zhu, J.W. & Yang,
J.M. 2003. Increase of β-1,3-glucanase and chitinase activities in cotton
callus cells treated by salicylic acid and toxin of Verticillium dahliae. Acta Botanica Sinica 45(7): 802-808.
Lindermayr, C., Saalbach, G. & Durner, J. 2005.
Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant
Physiology 137(3): 921-930.
Liu, J.J. & Yin, G.Y. 1993. Study on the root rot and
yellow leaf disease of citrus in Jiangsu and Hubei provinces. Journal of
Nanjing Agricultural University 16(1): 38-44 (in Chinese with English
abstract).
Mozzetti, C., Ferraris, L., Tamietti, G. & Matta, A.
1995. Variation in enzyme activities in leaves and cell suspensions as markers
of incompatibility in different Phytophthora-pepper interactions. Physiological
and Molecular Plant Pathology 46(2): 95-107.
Queiroz, B.P.V. & Melo, I.S. 2006. Antagonism of Serratia
marcescens towards Phytophthora parasitica and its effects in
promoting the growth of citrus. Brazilian Journal of Microbiology 37(4):
448-450.
Robert-Seilaniantz, A., Grant, M. & Jones, J.D. 2011.
Hormone crosstalk in plant disease and defense: More than just
jasmonate-salicylate antagonism. Annual Review of Phytopathology 49:
317-343.
Sanders, P.M., Lee, P.Y., Biesgen, C., Boone, J.D., Beals,
T.P., Weiler, E.W. & Goldberg, R.B. 2000. The Arabidopsis DELAYED
DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. The
Plant Cell 12(7): 1041-1061.
Shiraishi, T., Yamada, T., Nicholson, R.L. & Kunoh, H.
1995. Phenylalanine ammonia-lyase in barley: Activity enhancement in response
to Erysiphe graminis f. sp. Hordei (race 1) a
pathogen, and Erysiphe pisi, a nonpathogen. Physiological and
Molecular Plant Pathology 46(2): 153- 162.
Song, Y.Y., Zeng, R.S., Xu, J.F., Li, J., Shen, X. &
Yihdego, W.G. 2010. Interplant communication of tomato plants through
underground common mycorrhizal networks. PloS ONE 5(10): e13324.
Vallad, G.E. & Goodman, R.M. 2004. Systemic acquired
resistance and induced systemic resistance in conventional agriculture. Crop
Science 44(6): 1920-1934.
Wasternack, C. & Parthier, B. 1997. Jasmonate-signalled
plant gene expression. Trends in Plant Science 2(8): 302-307.
Yan, H.X., Zhong, Y., Jiang, B., Zhou, B.R., Wu, B. &
Zhong, GY. 2017. Guanggan (Citrus reticulata) shows strong resistance to Phytophthora nicotianae. Scientia Horticulturae 228: 141-149.
Zhang, L., Wei, L., Tang, X.F., Wang, W.W., Yu, Z.Y. &
Liu, L.J. 2017. Bioinformatics analysis of soybean β-1,3-glucanase (GmBG1)
and its homologous proteins. Genomics and Applied Biology 36(3):
1035-1042.
Zhou, C.H. 1999. Resistance identification of citrus somatic
cell hybrid to Phytophthora parasitica and study of Phytophthora
parasitica toxin. Doctoral dissertation, Wuhan: Huazhong Agricultural
University (Unpublished).
*Corresponding
author; email: wuqiangsh@163.com
|