Sains Malaysiana 47(9)(2018): 1979–1989
http://dx.doi.org/10.17576/jsm-2018-4709-05
Evolution
by Gene Duplication, Recombination and Selection in MHC Class I
Genes of Odorrana margaretae
(Evolusi melalui Penduaan Gen, Penggabungan Semula dan Gen Pemilihan Kelas 1 MHC Odorrana margaretae)
HU CHEN,
XIAORONG
TAN,
FUYAO
HAN,
YONGFANG
YAO,
HUAILIANG
XU
& MINGWANG ZHANG*
College of Animal
Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
Received: 28 February
2018/Accepted: 4 June 2018
ABSTRACT
Amphibians have undergone catastrophic
declines worldwide and the major histocompatibility complex (MHC)
is an attractive candidate for investigating the link between adaptive
variation and individual fitness. Nonetheless, little research has
been conducted to study the amphibians MHC genes. Thus, MHC
class Ia
of Odorrana margaretae, a representative species
of the Odorrana, was isolated and
used to analyze the adaptive mechanism. We isolated alleles and
determined evolution patterns of MHC class Ia
in O. margaretae. The phylogenetic tree of MHC class
Ia was reconstructed
to understand the evolutionary relationship of Anura.
In O. margaretae of MHC class Ia:
there were more non-synonymous mutations compared to synonymous
mutations; there are at least two loci; the recombination alleles
took place for a large proportion (55.56%) of the alleles and recombination
usually took place between whole exon of Ia
genes of MHC class;
positive selection sites were detected and most (10 of 19) located
at the α1 and α2 domains belonged to the presumed ABS.
The diversity of genes of MHC class Ia was led by recombination, gene duplication and positive
selection. Trans-species polymorphisms of anuran genes of MHC
class Ia
were evident in anurans. Therefore, the MHC class Ia present demonstrative candidates for investigating
the link between adaptive variation and individual fitness. We argue
that knowledge of the MHC of other anuran lineage, especially
focusing a genus such as O. margaretae, should provide an
overall more complete picture of the organization of MHC in
anurans.
Keywords: Adaptive variation;
anurans; evolution; individual fitness; major histocompatibility
complex; polymorphism
ABSTRAK
Amfibia telah menjalani
bencana penurunan
di seluruh dunia dan
kompleks kehistoserasian
utama (MHC) adalah
calon yang menarik untuk mengkaji kaitan antara variasi
mudah suai dan kecergasan individu. Walau bagaimanapun,
terdapat kurang
kajian yang dijalankan untuk mengkaji gen MHC
amfibia. Oleh itu, MHC kelas Ia Odorrana
margaretae, satu spesies
yang mewakili Odorrana, dipencil
dan digunakan
untuk menganalisis mekanisme mudah suai. Kami memencil alel dan menentukan
evolusi corak
MHC
kelas Ia
dalam O. margaretae. Pokok filogenetik MHC kelas Ia
telah dibina
semula untuk memahami
hubungan evolusi
Anura. Dalam O. margaretae MHC
kelas Ia: terdapat lebih banyak mutasi sinonim
berbanding sinonim
mutasi; terdapat sekurang-kurangnya dua loci; penggabungan semula alel berlaku bagi
sebahagian besar
(55.56%) daripada alel ini
dan penggabungan
semula ini biasanya
berlaku antara
keseluruhan ekson gen MHC
kelas Ia; tapak
pilihan positif
dikesan dan kebanyakannya
(10 daripada 19) terletak
di dalam domain α1 dan
α2 dipercayai kepunyaan
ABS.
Kepelbagaian gen kelas
MHC
Ia dipimpin oleh
penggabungan semula,
penduaan gen dan pemilihan positif. Polimorfisme trans-spesies gen anura MHC kelas Ia adalah
jelas dalam
anura. Oleh itu,
MHC
kelas Ia menunjukkan calon untuk mengkaji
kaitan antara
perubahan mudah suai dan kecergasan
individu. Kami berpendapat
bahawa pengetahuan daripada MHC keturunan
anura lain,
terutamanya menumpukan
kepada genus seperti O. margaretae
sepatutnya menyediakan
satu gambaran
lebih lengkap keseluruhan
susunan MHC dalam
anura.
Kata kunci: Anura;
evolusi; kecergasan
individu; kompleks utama kehistoserasian; perubahan mudah suai; polimorfisme
REFERENCES
Aguilar,
A., Roemer, G., Debenham, S., Binns,
M., Garcelon, D. & Wayne, R.K. 2004. High MHC diversity
maintained by balancing selection in an otherwise genetically monomorphic
mammal. PNAS 101(10): 3490-3494.
Andersson, L. & Mikko, S. 1995. Generation of MHC class
II diversity by intra- and intergenic recombination. Immunol. Rev. 143: 5-12.
Begovich,
A.B., Mcclure, G.R., Suraj,
V.C., Helmuth, R.C., Fildes, N., Bugawan,
T.L., Erlich, H.A. & Klitz,
W. 1992.
Polymorphism, recombination, and linkage disequilibrium within the
HLA class II region. J. Immunol.
148(1): 249-258.
Bernatchez,
L. & Landry, C. 2003. MHC studies in nonmodel
vertebrates: What have we learned about natural selection in 15
years? J. Evol. Biol. 16: 363-377.
Bjorkman,
P., Saper, M., Samraoui,
B., Bennett, W., Strominger, J. &
Wiley, D. 1987a.
The foreign antigen binding site and T cell recognition
regions of class I histocompatibility antigens. Nature
329(6139): 512-518.
Bjorkman,
P.J., Saper, M., Samraoui,
B., Bennett, W.S., Strominger, J.L. &
Wiley, D. 1987b.
Structure of the human class I histocompatibility
antigen, HLA-A 2. Nature 329: 506-512.
Boni,
M.F., Posada, D., Feldman, M.W. & Boni,
M.F. 2007.
An exact nonparametric method for inferring mosaic
structure in sequence triplets. Genetics 176: 1035-1047.
Bos,
D. & Waldman, B. 2006a. Polymorphism, natural
selection, and structural modeling of class Ia
MHC in the African clawed frog (Xenopus
laevis). Immunogenetics
58: 433-442.
Bos,
D.H. & Waldman, B. 2006b. Evolution by recombination and transspecies
polymorphism in the MHC class I gene of Xenopus
laevis. Mol. Biol. Evol.
23: 137-143.
Cardenas,
P.P., Suarez, C.F., Martinez, P., Patarroyo,
M.E. & Patarroyo, M.A. 2005. MHC class I genes
in the owl monkey: Mosaic organisation,
convergence and loci diversity. Immunogenetics
56: 818-832.
Carey,
C., Cohen, N. & Rollins-Smith, L. 1999. Amphibian declines:
An immunological perspective. Dev. Comp. Immunol.
23: 459-472.
Consuegra, S., Megens, H.J., Schaschl, H., Leon,
K., Stet, R. & Jordan, W. 2005. Rapid evolution of the MH class
I locus results in different allelic compositions in recently diverged
populations of Atlantic salmon. Mol. Biol. Evol.
22: 1095- 1106.
Daszak,
P., Berger, L., Cunningham, A.A., Hyatt, A.D., Green, D.E. &
Speare, R. 1999. Emerging infectious
diseases and amphibian population declines. Emerging
Infectious Diseases 5(6): 735-748.
Dubois A. 1992.
Notes sur la classification des Ranidae
(Amphibiens Anoures). Bulletin
Mensuel de la Société
Linnéenne de Lyon 61: 305-352.
Edwards,
S.V. & Hedrick, P.W. 1998. Evolution and ecology of MHC molecules:
From genomics to sexual selection. Trends Ecol.
Evol. 13(8): 305-311.
Evans,
B.J., Kelley, D.B., Tinsley, R.C., Melnick,
D.J. & Cannatella, D.C. 2004. A mitochondrial
DNA phylogeny of African clawed frogs: Phylogeography
and implications for polyploid evolution.
Mol. Phylogen. Evol. 33(1): 197-213.
Figueroa,
F., Mayer, W.E., Sato, A., Zaleska-Rutczynska,
Z., Hess, B., Tichy, H. & Klein, J.
2001. Mhc class I genes of swordtail fishes,
Xiphophorus: Variation in the number of
loci and existence of ancient gene families. Immunogenetics
53: 695-708.
Flajnik,
M.F. & Kasahara, M. 2001. Comparative genomics
of the MHC: Glimpses into the evolution of the adaptive immune system.
Immunity 15(3): 351-362.
Garrigan,
D., Hedrick, P.W. & Mitton, J. 2003. Perspective: Detecting adaptive
molecular polymorphism: Lessons from the MHC. Evolution 57:
1707-1722.
Gibbs,
M.J., Armstrong, J.S. & Gibbs, A.J. 2000. Sister-scanning:
A Monte Carlo procedure for assessing signals in recombinant sequences.
Bioinformatics 16: 573-582.
Haddad,
C.F., Pombal Jr., J.P. & Batistic,
R.F. 1994.
Natural hybridization between diploid and tetraploid
species of leaf-frogs, genus Phyllomedusa
(Amphibia). J. Herpetol.
28(4): 425-430.
Hughes, A.M. 1998.
Natural selection at major histocompatibility
complex loci of vertebrates. Annual Review of Genetics
32: 415-435.
Jakobsen, I.B., Wilson,
S.R. & Easteal, S. 1998. Patterns
of reticulate evolution for the classical class I and II HLA loci.
Immunogenetics 48: 312-323.
Jeffery,
K.J.M. & Bangham, C.R.M. 2000. Do infectious
diseases drive MHC diversity? Microbes & Infection 2:
1335-1341.
Kaufman, J., Milne,
S., Göbel, T.W., Walker, B.A., Jacob,
J.P., Auffray, C., Zoorob, R. & Beck,
S. 1999. The chicken B locus is a minimal essential major histocompatibility
complex. Nature 401: 923-925.
Kiemnec-Tyburczy,
K., Richmond, J., Savage, A., Lips, K. & Zamudio,
K. 2012.
Genetic diversity of MHC class I loci in six non-model frogs is
shaped by positive selection and gene duplication. Heredity 109:
146-155.
Klein, J. 1986.
Natural History of the Major Histocompatibility Complex.
New York: Wiley.
Koch, M., Camp,
S., Collen, T., Avila, D., Salomonsen,
J., Wallny, H.J., van Hateren, A., Hunt,
L., Jacob, J.P. & Johnston, F. 2007. Structures of an MHC class
I molecule from B21 chickens illustrate promiscuous peptide binding.
Immunity 27: 885-899.
Kosakovsky
Pond, S.L., Posada, D., Gravenor, M.B., Woelk,
C.H. & Frost, S.D. 2006. Automated phylogenetic detection
of recombination using a genetic algorithm. Molecular
Biology & Evolution 23: 1891-1901.
Kosakovsky
Pond, S.L. & Frost, S.D. 2005. Not so different after all: A comparison
of methods for detecting amino acid sites under selection. Molecular
Biology & Evolution 22(5): 1208-1222.
Martin,
D. & Rybicki, E. 2000. RDP: Detection
of recombination amongst aligned sequences. Bioinformatics 16(6):
562-563.
Matsui,
M. 1994. A taxonomic study of the Rana narina
complex, with description of three new species (Amphibia: Ranidae).
Zool. J. Linn. Soc. 111: 385-415.
McCairns, R.J.S., Bourget, S. & Bernatchez,
L. 2011. Putative causes and consequences of MHC variation within and
between locally adapted stickleback demes. Mol. Ecol. 20:
486-502.
Miller,
K.M. & Withler, R.E. 1998. The salmonid class
I MHC: Limited diversity in a primitive teleost. Immunol. Rev. 166: 279-293.
Murrell, B., Wertheim,
J.O., Moola, S., Weighill,
T., Scheffler, K. & Pond, S.L.K. 2012.
Detecting individual sites subject to episodic diversifying selection.
PLoS Genet. 8: e1002764.
Nei, M., Gu, X. & Sitnikova,
T. 1997. Evolution by the birth-and-death process
in multigene families of the vertebrate immune system. Proceedings
of the National Academy of Sciences 94: 7799-7806.
Nei,
M. & Rooney, A.P. 2005. Concerted and birth-and-death
evolution of multigene families. Annu. Rev.
Genet. 39: 121-152.
Nonaka,
M.I., Aizawa, K., Mitani,
H., Bannai, H.P. & Nonaka, M. 2011. Retained orthologous relationships of the MHC Class I genes during
euteleost evolution. Mol. Biol. Evol. 28(11): 3099-3112.
Nonaka,
M., Namikawa, C., Kato, Y., Sasaki, M.,
Salter-Cid, L. & Flajnik, M.F. 1997. Major histocompatibility
complex gene mapping in the amphibian Xenopus
implies a primordial organization. Proceedings of the National
Academy of Sciences 94: 5789-5791.
Piertney,
S. & Oliver, M. 2006. The evolutionary ecology
of the major histocompatibility complex. Heredity 96:
7-21.
Posada,
D. & Crandall, K.A. 2001. Evaluation of methods for detecting recombination
from DNA sequences: Computer simulations. P.N.A.S. 98(24):
13757-13762.
Potts,
W.K. & Wakeland, E.K. 1990. Evolution of diversity
at the major histocompatibility complex. Trends
Ecol. Evol. 5: 181-187.
Pounds, J.A., Bustamante,
M.R., Coloma, L.A., Consuegra, J.A., Fogden, M.P., Foster, P.N., La Marca,
E., Masters, K.L., Merino-Viteri, A &
Puschendorf, R. 2006. Widespread amphibian
extinctions from epidemic disease driven by global warming.
Nature 439: 161-167.
Ptacek,
M.B., Gerhardt, H.C. & Sage, R.D. 1994. Speciation by
polyploidy in treefrogs: Multiple origins
of the tetraploid, Hyla versicolor.
Evolution 48(3): 898-908.
Radwan,
J., Biedrzycka, A. & Babik,
W. 2010.
Does reduced MHC diversity decrease viability of vertebrate populations?
Biol. Conserv. 143: 537-544.
Sato,
A., Klein, D., Sültmann, H., Figueroa,
F., O’hUigin, C. & Klein, J. 1997. Class I Mhc genes of cichlid fishes: Identification,
expression, and polymorphism. Immunogenetics
46: 63-72.
Sawyer, S. 1989.
Statistical tests for detecting gene conversion. Molecular Biology
& Evolution 6: 526-538.
Scheffler,
K., Martin, D.P. & Seoighe, C. 2006. Robust inference of positive selection from recombining coding sequences.
Bioinformatics 22: 2493-2499.
She,
J.X., Boehme, S.A., Wang, T.W., Bonhomme,
F. & Wakeland, E.K. 1991. Amplification of major histocompatibility
complex class ii gene diversity by intraexonic
recombination. P.N.A.S. 88: 453-457.
Shum, B.P., Guethlein, L., Flodin, L.R., Adkison, M.A., Hedrick, R.P., Nehring,
R.B., Stet, R.J., Secombes, C. & Parham,
P. 2001. Modes of salmonid MHC class I and II evolution differ
from the primate paradigm. The Journal of Immunology 166:
3297-3308.
Smith, J.M. 1992.
Analyzing the mosaic structure of genes.
J. Mol. Evol. 34: 126-129.
Sommer, S. 2005.
The importance of immune gene variability (MHC)
in evolutionary ecology and conservation. Frontiers in
Zoology 2:16. https://doi.org/10.1186/1742-9994-2-16.
Spurgin,
L.G. & Richardson, D.S. 2010. How pathogens drive genetic diversity:
MHC, mechanisms and misunderstandings. Proceedings of the Royal
Society of London B: Biological Sciences DOI: 10.1098/rspb.2009.2084
Stuart,
S.N., Chanson, J.S., Cox, N.A., Young, B.E., Rodrigues, A.S., Fischman, D.L. & Waller, R.W. 2004. Status and trends of amphibian declines and extinctions worldwide.
Science 306: 1783-1786.
Teacher,
A.G.F., Garner, T.W.J. & Nichols, R.A. 2009. Evidence for directional
selection at a novel major histocompatibility class i marker in wild common frogs (Rana temporaria)
exposed to a viral pathogen (Ranavirus).
Plos One 4: e4616.
Trowsdale, J. 2011. The MHC, disease and selection. Immunol. Lett. 137: 1-8.
Van
Eden, W., Devries, R. & Van Rood, J. 1983. The genetic approach to infectious disease with special emphasis on
the MHC. Dis. Mark. 1: 221-242.
Vincek,
V., Nizetić, D., Golubić,
M., Figueroa, F., Nevo, E. & Klein,
J. 1987. Evolutionary expansion
of Mhc class
I loci in the mole-rat, Spalax
ehrenbergi. Mol. Biol. Evol.
4: 483-491.
Wang,
D., Zhong, L., Wei, Q., Gan,
X. & He, S. 2010. Evolution of MHC class I genes in two ancient fish,
paddlefish (Polyodon spathula)
and Chinese sturgeon (Acipenser
sinensis). FEBS Lett.
584: 3331-3339.
Wegner,
K.M., Reusch, T.B.H. & Kalbe, M. 2003. Multiple parasites
are driving major histocompatibility complex polymorphism in the
wild. J. Evol. Biol. 16: 224-232.
Wenyuan, C., Zisu, W., Xizhong, W., Yuhua, Y. & Qiling, S. 1983.
A comparative study of the karyotypes from six spercies
of frogs in Sichuan. Zoological Research 4: 83-88.
Westerdahl,
H., Wittzell, H., von Schantz, T. &
Bensch, S. 2004. MHC class I typing in a songbird with
numerous loci and high polymorphism using motif-specific PCR and
DGGE. Heredity 92: 534-542.
Wutzler,
R., Foerster, K. & Kempenaers,
B. 2012.
MHC class I variation in a natural blue tit population (Cyanistes
caeruleus). Genetica
140(7-9): 349-364.
Xu,
K., Zhu, D.Z., Wei, Y., Schloegel, L.M.,
Chen, X.F. & Wang, X.L. 2010. Broad distribution of ranavirus in free-ranging Rana dybowskii
in Heilongjiang, China. EcoHealth
7: 18-23.
Zhao,
M., Wang, Y., Shen, H., Li, C., Chen, C., Luo, Z. & Wu, H. 2013a. Evolution by selection,
recombination, and gene duplication in MHC class I genes of two
Rhacophoridae species. BMC Evol. Biol. 13: 113. https:// doi.org/10.1186/1471-2148-13-113.
*Corresponding author; email: mwzhangkiz@hotmail.com
|