Sains Malaysiana 47(9)(2018): 1979–1989

http://dx.doi.org/10.17576/jsm-2018-4709-05

 

Evolution by Gene Duplication, Recombination and Selection in MHC Class I Genes of Odorrana margaretae

(Evolusi melalui Penduaan Gen, Penggabungan Semula dan Gen Pemilihan Kelas 1 MHC Odorrana margaretae)

 

HU CHEN, XIAORONG TAN, FUYAO HAN, YONGFANG YAO, HUAILIANG XU & MINGWANG ZHANG*

 

College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China

 

Received: 28 February 2018/Accepted: 4 June 2018

 

ABSTRACT

Amphibians have undergone catastrophic declines worldwide and the major histocompatibility complex (MHC) is an attractive candidate for investigating the link between adaptive variation and individual fitness. Nonetheless, little research has been conducted to study the amphibians MHC genes. Thus, MHC class Ia of Odorrana margaretae, a representative species of the Odorrana, was isolated and used to analyze the adaptive mechanism. We isolated alleles and determined evolution patterns of MHC class Ia in O. margaretae. The phylogenetic tree of MHC class Ia was reconstructed to understand the evolutionary relationship of Anura. In O. margaretae of MHC class Ia: there were more non-synonymous mutations compared to synonymous mutations; there are at least two loci; the recombination alleles took place for a large proportion (55.56%) of the alleles and recombination usually took place between whole exon of Ia genes of MHC class; positive selection sites were detected and most (10 of 19) located at the α1 and α2 domains belonged to the presumed ABS. The diversity of genes of MHC class Ia was led by recombination, gene duplication and positive selection. Trans-species polymorphisms of anuran genes of MHC class Ia were evident in anurans. Therefore, the MHC class Ia present demonstrative candidates for investigating the link between adaptive variation and individual fitness. We argue that knowledge of the MHC of other anuran lineage, especially focusing a genus such as O. margaretae, should provide an overall more complete picture of the organization of MHC in anurans.

 

Keywords: Adaptive variation; anurans; evolution; individual fitness; major histocompatibility complex; polymorphism

 

ABSTRAK

Amfibia telah menjalani bencana penurunan di seluruh dunia dan kompleks kehistoserasian utama (MHC) adalah calon yang menarik untuk mengkaji kaitan antara variasi mudah suai dan kecergasan individu. Walau bagaimanapun, terdapat kurang kajian yang dijalankan untuk mengkaji gen MHC amfibia. Oleh itu, MHC kelas Ia Odorrana margaretae, satu spesies yang mewakili Odorrana, dipencil dan digunakan untuk menganalisis mekanisme mudah suai. Kami memencil alel dan menentukan evolusi corak MHC kelas Ia dalam O. margaretae. Pokok filogenetik MHC kelas Ia telah dibina semula untuk memahami hubungan evolusi Anura. Dalam O. margaretae MHC kelas Ia: terdapat lebih banyak mutasi sinonim berbanding sinonim mutasi; terdapat sekurang-kurangnya dua loci; penggabungan semula alel berlaku bagi sebahagian besar (55.56%) daripada alel ini dan penggabungan semula ini biasanya berlaku antara keseluruhan ekson gen MHC kelas Ia; tapak pilihan positif dikesan dan kebanyakannya (10 daripada 19) terletak di dalam domain α1 dan α2 dipercayai kepunyaan ABS. Kepelbagaian gen kelas MHC Ia dipimpin oleh penggabungan semula, penduaan gen dan pemilihan positif. Polimorfisme trans-spesies gen anura MHC kelas Ia adalah jelas dalam anura. Oleh itu, MHC kelas Ia menunjukkan calon untuk mengkaji kaitan antara perubahan mudah suai dan kecergasan individu. Kami berpendapat bahawa pengetahuan daripada MHC keturunan anura lain, terutamanya menumpukan kepada genus seperti O. margaretae sepatutnya menyediakan satu gambaran lebih lengkap keseluruhan susunan MHC dalam anura.

 

Kata kunci: Anura; evolusi; kecergasan individu; kompleks utama kehistoserasian; perubahan mudah suai; polimorfisme

REFERENCES

Aguilar, A., Roemer, G., Debenham, S., Binns, M., Garcelon, D. & Wayne, R.K. 2004. High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. PNAS 101(10): 3490-3494.

Andersson, L. & Mikko, S. 1995. Generation of MHC class II diversity by intra- and intergenic recombination. Immunol. Rev. 143: 5-12.

Begovich, A.B., Mcclure, G.R., Suraj, V.C., Helmuth, R.C., Fildes, N., Bugawan, T.L., Erlich, H.A. & Klitz, W. 1992. Polymorphism, recombination, and linkage disequilibrium within the HLA class II region. J. Immunol. 148(1): 249-258.

Bernatchez, L. & Landry, C. 2003. MHC studies in nonmodel vertebrates: What have we learned about natural selection in 15 years? J. Evol. Biol. 16: 363-377.

Bjorkman, P., Saper, M., Samraoui, B., Bennett, W., Strominger, J. & Wiley, D. 1987a. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329(6139): 512-518.

Bjorkman, P.J., Saper, M., Samraoui, B., Bennett, W.S., Strominger, J.L. & Wiley, D. 1987b. Structure of the human class I histocompatibility antigen, HLA-A 2. Nature 329: 506-512.

Boni, M.F., Posada, D., Feldman, M.W. & Boni, M.F. 2007. An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 176: 1035-1047.

Bos, D. & Waldman, B. 2006a. Polymorphism, natural selection, and structural modeling of class Ia MHC in the African clawed frog (Xenopus laevis). Immunogenetics 58: 433-442.

Bos, D.H. & Waldman, B. 2006b. Evolution by recombination and transspecies polymorphism in the MHC class I gene of Xenopus laevis. Mol. Biol. Evol. 23: 137-143.

Cardenas, P.P., Suarez, C.F., Martinez, P., Patarroyo, M.E. & Patarroyo, M.A. 2005. MHC class I genes in the owl monkey: Mosaic organisation, convergence and loci diversity. Immunogenetics 56: 818-832.

Carey, C., Cohen, N. & Rollins-Smith, L. 1999. Amphibian declines: An immunological perspective. Dev. Comp. Immunol. 23: 459-472.

Consuegra, S., Megens, H.J., Schaschl, H., Leon, K., Stet, R. & Jordan, W. 2005. Rapid evolution of the MH class I locus results in different allelic compositions in recently diverged populations of Atlantic salmon. Mol. Biol. Evol. 22: 1095- 1106.

Daszak, P., Berger, L., Cunningham, A.A., Hyatt, A.D., Green, D.E. & Speare, R. 1999. Emerging infectious diseases and amphibian population declines. Emerging Infectious Diseases 5(6): 735-748.

Dubois A. 1992. Notes sur la classification des Ranidae (Amphibiens Anoures). Bulletin Mensuel de la Société Linnéenne de Lyon 61: 305-352.

Edwards, S.V. & Hedrick, P.W. 1998. Evolution and ecology of MHC molecules: From genomics to sexual selection. Trends Ecol. Evol. 13(8): 305-311.

Evans, B.J., Kelley, D.B., Tinsley, R.C., Melnick, D.J. & Cannatella, D.C. 2004. A mitochondrial DNA phylogeny of African clawed frogs: Phylogeography and implications for polyploid evolution. Mol. Phylogen. Evol. 33(1): 197-213.

Figueroa, F., Mayer, W.E., Sato, A., Zaleska-Rutczynska, Z., Hess, B., Tichy, H. & Klein, J. 2001. Mhc class I genes of swordtail fishes, Xiphophorus: Variation in the number of loci and existence of ancient gene families. Immunogenetics 53: 695-708.

Flajnik, M.F. & Kasahara, M. 2001. Comparative genomics of the MHC: Glimpses into the evolution of the adaptive immune system. Immunity 15(3): 351-362.

Garrigan, D., Hedrick, P.W. & Mitton, J. 2003. Perspective: Detecting adaptive molecular polymorphism: Lessons from the MHC. Evolution 57: 1707-1722.

Gibbs, M.J., Armstrong, J.S. & Gibbs, A.J. 2000. Sister-scanning: A Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16: 573-582.

Haddad, C.F., Pombal Jr., J.P. & Batistic, R.F. 1994. Natural hybridization between diploid and tetraploid species of leaf-frogs, genus Phyllomedusa (Amphibia). J. Herpetol. 28(4): 425-430.

Hughes, A.M. 1998. Natural selection at major histocompatibility complex loci of vertebrates. Annual Review of Genetics 32: 415-435.

Jakobsen, I.B., Wilson, S.R. & Easteal, S. 1998. Patterns of reticulate evolution for the classical class I and II HLA loci. Immunogenetics 48: 312-323.

Jeffery, K.J.M. & Bangham, C.R.M. 2000. Do infectious diseases drive MHC diversity? Microbes & Infection 2: 1335-1341.

Kaufman, J., Milne, S., Göbel, T.W., Walker, B.A., Jacob, J.P., Auffray, C., Zoorob, R. & Beck, S. 1999. The chicken B locus is a minimal essential major histocompatibility complex. Nature 401: 923-925.

Kiemnec-Tyburczy, K., Richmond, J., Savage, A., Lips, K. & Zamudio, K. 2012. Genetic diversity of MHC class I loci in six non-model frogs is shaped by positive selection and gene duplication. Heredity 109: 146-155.

Klein, J. 1986. Natural History of the Major Histocompatibility Complex. New York: Wiley.

Koch, M., Camp, S., Collen, T., Avila, D., Salomonsen, J., Wallny, H.J., van Hateren, A., Hunt, L., Jacob, J.P. & Johnston, F. 2007. Structures of an MHC class I molecule from B21 chickens illustrate promiscuous peptide binding. Immunity 27: 885-899.

Kosakovsky Pond, S.L., Posada, D., Gravenor, M.B., Woelk, C.H. & Frost, S.D. 2006. Automated phylogenetic detection of recombination using a genetic algorithm. Molecular Biology & Evolution 23: 1891-1901.

Kosakovsky Pond, S.L. & Frost, S.D. 2005. Not so different after all: A comparison of methods for detecting amino acid sites under selection. Molecular Biology & Evolution 22(5): 1208-1222.

Martin, D. & Rybicki, E. 2000. RDP: Detection of recombination amongst aligned sequences. Bioinformatics 16(6): 562-563.

Matsui, M. 1994. A taxonomic study of the Rana narina complex, with description of three new species (Amphibia: Ranidae). Zool. J. Linn. Soc. 111: 385-415.

McCairns, R.J.S., Bourget, S. & Bernatchez, L. 2011. Putative causes and consequences of MHC variation within and between locally adapted stickleback demes. Mol. Ecol. 20: 486-502.

Miller, K.M. & Withler, R.E. 1998. The salmonid class I MHC: Limited diversity in a primitive teleost. Immunol. Rev. 166: 279-293.

Murrell, B., Wertheim, J.O., Moola, S., Weighill, T., Scheffler, K. & Pond, S.L.K. 2012. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 8: e1002764.

Nei, M., Gu, X. & Sitnikova, T. 1997. Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proceedings of the National Academy of Sciences 94: 7799-7806.

Nei, M. & Rooney, A.P. 2005. Concerted and birth-and-death evolution of multigene families. Annu. Rev. Genet. 39: 121-152.

Nonaka, M.I., Aizawa, K., Mitani, H., Bannai, H.P. & Nonaka, M. 2011. Retained orthologous relationships of the MHC Class I genes during euteleost evolution. Mol. Biol. Evol. 28(11): 3099-3112.

Nonaka, M., Namikawa, C., Kato, Y., Sasaki, M., Salter-Cid, L. & Flajnik, M.F. 1997. Major histocompatibility complex gene mapping in the amphibian Xenopus implies a primordial organization. Proceedings of the National Academy of Sciences 94: 5789-5791.

Piertney, S. & Oliver, M. 2006. The evolutionary ecology of the major histocompatibility complex. Heredity 96: 7-21.

Posada, D. & Crandall, K.A. 2001. Evaluation of methods for detecting recombination from DNA sequences: Computer simulations. P.N.A.S. 98(24): 13757-13762.

Potts, W.K. & Wakeland, E.K. 1990. Evolution of diversity at the major histocompatibility complex. Trends Ecol. Evol. 5: 181-187.

Pounds, J.A., Bustamante, M.R., Coloma, L.A., Consuegra, J.A., Fogden, M.P., Foster, P.N., La Marca, E., Masters, K.L., Merino-Viteri, A & Puschendorf, R. 2006. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439: 161-167.

Ptacek, M.B., Gerhardt, H.C. & Sage, R.D. 1994. Speciation by polyploidy in treefrogs: Multiple origins of the tetraploid, Hyla versicolor. Evolution 48(3): 898-908.

Radwan, J., Biedrzycka, A. & Babik, W. 2010. Does reduced MHC diversity decrease viability of vertebrate populations? Biol. Conserv. 143: 537-544.

Sato, A., Klein, D., Sültmann, H., Figueroa, F., O’hUigin, C. & Klein, J. 1997. Class I Mhc genes of cichlid fishes: Identification, expression, and polymorphism. Immunogenetics 46: 63-72.

Sawyer, S. 1989. Statistical tests for detecting gene conversion. Molecular Biology & Evolution 6: 526-538.

Scheffler, K., Martin, D.P. & Seoighe, C. 2006. Robust inference of positive selection from recombining coding sequences. Bioinformatics 22: 2493-2499.

She, J.X., Boehme, S.A., Wang, T.W., Bonhomme, F. & Wakeland, E.K. 1991. Amplification of major histocompatibility complex class ii gene diversity by intraexonic recombination. P.N.A.S. 88: 453-457.

Shum, B.P., Guethlein, L., Flodin, L.R., Adkison, M.A., Hedrick, R.P., Nehring, R.B., Stet, R.J., Secombes, C. & Parham, P. 2001. Modes of salmonid MHC class I and II evolution differ from the primate paradigm. The Journal of Immunology 166: 3297-3308.

Smith, J.M. 1992. Analyzing the mosaic structure of genes. J. Mol. Evol. 34: 126-129.

Sommer, S. 2005. The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Frontiers in Zoology 2:16. https://doi.org/10.1186/1742-9994-2-16.

Spurgin, L.G. & Richardson, D.S. 2010. How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proceedings of the Royal Society of London B: Biological Sciences DOI: 10.1098/rspb.2009.2084

Stuart, S.N., Chanson, J.S., Cox, N.A., Young, B.E., Rodrigues, A.S., Fischman, D.L. & Waller, R.W. 2004. Status and trends of amphibian declines and extinctions worldwide. Science 306: 1783-1786.

Teacher, A.G.F., Garner, T.W.J. & Nichols, R.A. 2009. Evidence for directional selection at a novel major histocompatibility class i marker in wild common frogs (Rana temporaria) exposed to a viral pathogen (Ranavirus). Plos One 4: e4616.

Trowsdale, J. 2011. The MHC, disease and selection. Immunol. Lett. 137: 1-8.

Van Eden, W., Devries, R. & Van Rood, J. 1983. The genetic approach to infectious disease with special emphasis on the MHC. Dis. Mark. 1: 221-242.

Vincek, V., Nizetić, D., Golubić, M., Figueroa, F., Nevo, E. & Klein, J. 1987. Evolutionary expansion of Mhc class I loci in the mole-rat, Spalax ehrenbergi. Mol. Biol. Evol. 4: 483-491.

Wang, D., Zhong, L., Wei, Q., Gan, X. & He, S. 2010. Evolution of MHC class I genes in two ancient fish, paddlefish (Polyodon spathula) and Chinese sturgeon (Acipenser sinensis). FEBS Lett. 584: 3331-3339.

Wegner, K.M., Reusch, T.B.H. & Kalbe, M. 2003. Multiple parasites are driving major histocompatibility complex polymorphism in the wild. J. Evol. Biol. 16: 224-232.

Wenyuan, C., Zisu, W., Xizhong, W., Yuhua, Y. & Qiling, S. 1983. A comparative study of the karyotypes from six spercies of frogs in Sichuan. Zoological Research 4: 83-88.

Westerdahl, H., Wittzell, H., von Schantz, T. & Bensch, S. 2004. MHC class I typing in a songbird with numerous loci and high polymorphism using motif-specific PCR and DGGE. Heredity 92: 534-542.

Wutzler, R., Foerster, K. & Kempenaers, B. 2012. MHC class I variation in a natural blue tit population (Cyanistes caeruleus). Genetica 140(7-9): 349-364.

Xu, K., Zhu, D.Z., Wei, Y., Schloegel, L.M., Chen, X.F. & Wang, X.L. 2010. Broad distribution of ranavirus in free-ranging Rana dybowskii in Heilongjiang, China. EcoHealth 7: 18-23.

Zhao, M., Wang, Y., Shen, H., Li, C., Chen, C., Luo, Z. & Wu, H. 2013a. Evolution by selection, recombination, and gene duplication in MHC class I genes of two Rhacophoridae species. BMC Evol. Biol. 13: 113. https:// doi.org/10.1186/1471-2148-13-113.

 

 

*Corresponding author; email: mwzhangkiz@hotmail.com

 

 

 

 

 

 

previous