Sains Malaysiana 47(9)(2018): 2073–2082
http://dx.doi.org/10.17576/jsm-2018-4709-15
Penghidrogenan Getah Asli Cecair
menggunakan Sistem
Mangkin Selenium
(Hydrogenation of Liquid Natural Rubber using Selenium-Catalyzed
System)
NUR AIDASYAKIRAH
MOHD
TAHIR1,
MOHAMAD
SHAHRUL
FIZREE
IDRIS1,
MUHAMMAD
JEFRI
MOHD
YUSOF1
& SITI FAIRUS M. YUSOFF1,2*
1Pusat Pengajian Sains Kimia dan Teknologi Makanan,
Fakulti Sains
dan Teknologi, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2Polymer Research Centre
(PORCE), Fakulti Sains
dan Teknologi,
Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
Received: 27 March 2018/Accepted:
17 May 2018
ABSTRAK
Kaedah rangsangan permukaan
(RSM)
dengan reka
bentuk komposit putaran tengah (CCRD)
telah digunakan
untuk mengoptimumkan parameter bagi penghidrogenan getah asli cecair
(LNR)
dalam sistem
hidrazin hidrat (HH)
dan hidrogen peroksida
(H2O2) dengan
kehadiran selenium sebagai
mangkin. Parameter
yang dikaji bagi
tindak balas ini
adalah nisbah
mol HH:LNR (1.25-2.25),
nisbah mol
H2O2:LNR
(1.25-2.25), suhu (40-80°C)
dan masa tindak balas (4-8 jam). Berdasarkan data
yang diperoleh, penghasilan
getah asli
cecair terhidrogen (HLNR)
sesuai dijelaskan
dengan model kuadratik. Model kuadratik ini
mempunyai nilai
pekali penentuan (R2)
sebanyak 0.9596 yang menunjukkan
korelasi yang tinggi
antara peratus penghidrogenan sebenar dengan peratus yang telah diramalkan. Berdasarkan plot permukaan tindak balas 3D, suhu tindak balas
memainkan peranan
penting dalam penghidrogenan
LNR.
Keadaan optimum yang diperoleh
melalui RSM bagi
kajian ini
adalah nisbah mol
HH:LNR
pada 1.50, nisbah
mol H2O2:LNR
pada 2.00, suhu tindak balas pada
53.34°C dengan masa tindak
balas selama 5.21 jam yang memberikan peratusan penghidrogenan HLNR sebanyak
68.98%. Persamaan polinomial kuadratik
yang diperoleh daripada
RSM
ini berguna untuk
menghasilkan HLNR dengan
peratusan penghidrogenan
yang dikehendaki.
Kata kunci: Getah asli
cecair (LNR); kaedah
rangsangan permukaan
(RSM);
penghidrogenan; reka
bentuk komposit putaran tengah (CCRD);
selenium
ABSTRACT
Response surface methodology
(RSM) with central composite rotatable design (CCRD)
was used to optimize the hydrogenation parameters of liquid
natural rubber (LNR)
in hydrazine hydrate (HH) and hydrogen peroxide (H2O2)
system in the presence of selenium as catalyst. The parameters
studied in this research were the mole ratio of HH:LNR (1.25-2.25),
mole ratio of H2O2:LNR
(1.25-2.25), reaction temperature (40-80°C) and
reaction time (4-8 h). Based on the data obtained, hydrogenation
of LNR fit the quadratic model. This quadratic
model had the determination coefficient (R2)
of 0.9596 that showed high correlation between the actual hydrogenation
percentages and the predicted percentages. Based on the 3D surface
plot, the reaction temperature played an important role in the
hydrogenation of LNR.
The optimum conditions for hydrogenation of LNR in
hydrazine hydrate/hydrogen peroxide system in the presence of
selenium catalyst were as follows: mole ratio of HH:LNR of
1.50, mole ratio of H2O2:LNR
of 2.00, reaction temperature of 53.34°C and reaction
time of 5.21 h that yielded 68.98% of hydrogenated product.
Quadratic polynomial equation that was obtained from RSM is useful in preparing HLNR with
desired hydrogenation percentages.
Keywords: Central composite rotatable design (CCRD);
hydrogenation; liquid natural rubber (LNR); response
surface methodology (RSM); selenium
REFERENCES
Alshaibani, A.M.,
Yaakob, Z., Alsobaai,
A.M. & Sahri, M. 2014. Optimization
of Pd-B/γ-Al2O3 catalyst preparation
for palm oil hydrogenation by response surface methodology (RSM).
Brazilian Journal of Chemical Engineering 31(1): 69-78.
Baş, D.
& Boyacı, İ.H. 2007.
Modeling and optimization I: Usability of response surface methodology.
Journal of Food Engineering 78(3): 836-845.
De
Sarkar, M., De, P.P. & Bhowmick,
A.K. 1997. Thermoplastic
elastomeric hydrogenated styrene-butadiene elastomer: Optimization
of reaction conditions, thermodynamics, and kinetics. Journal
of Applied Polymer Science 66(6): 1151-1162.
Gazaley,
K.F. & Mente, P.G. 1986. Method for Reducing the Molecular Weight of Rubber Latex.
Malaysian Patent MY- 1003040A.
Hamizah, M.R.,
Nur Hanis
Adila, A., Naharullah, J. &
Siti Fairus, M.Y. 2016. Mild approach for non-catalytic hydrogenation of liquid natural rubber
using 2, 4, 6-trimethylbenzenesulfonyl hydrazide as the diimide source. Bulletin of the Korean Chemical
Society 37(6): 797-801.
Hamzaoui,
A.H., Jamoussi, B. & M’nif,
A. 2008. Lithium recovery from highly concentrated solutions:
Response surface methodology (RSM) process parameters optimization.
Hydrometallurgy 90(1): 1-7.
Hinchiranan,
N., Prasassarakich, P. & Rempel,
G.L. 2006. Hydrogenation
of synthetic cis-1,4-poly(isoprene)
and natural rubber catalyzed by [Ir(COD)py(Pcy3)PF6]. Journal
of Applied Polymer Science 100: 4219-4233.
Ibrahim
Abdullah. 1996. Process for Manufacturing Liquid Natural
Rubber (LNR). Malaysian Patent MY-108852-A.
Kargarzadeh, H.,
Ahmad, I., Abdullah, I., Thomas, R., Dufresne, A., Thomas, S.
& Hassan, A. 2014.
Functionalized liquid natural rubber and liquid
epoxidized natural rubber: A promising green toughening agent
for polyester. Journal of Applied Polymer Science
132(3): 41292.
Kodama,
S., Nishi, K. & Furukawa, M. 2003. Preparation of
low molecular weight natural rubber by ozonolysis
of high ammonia latex. Journal of Rubber Research
6(3): 153-163.
Kondo,
K., Murai, S. & Sonoda,
N. 1977.
Selenium catalyzed generation of diimide
from hydrazine: Selenium as a novel oxidizing reagent. Tetrahedron
Letters 18(42): 3727-3730.
Kongsinlark, A., Rempel, G.L. &
Prasassarakich, P. 2012. Synthesis
of nanosized ethylene-propylene rubber
latex via polyisoprene hydrogenation. Journal of Applied Polymer
Science 127(5): 3622-3632.
Li, Y., Lu, J., Gu, G. & Mao, Z. 2005. Characterization of the enzymatic degradation of arabinoxylans in grist containing wheat malt using response
surface methodology. Journal of the American Society
of Brewing Chemists 63(4): 171-176.
Lin,
X., Pan, Q. & Rempel, G.L. 2005. Gel formation in diimide-hydrogenated polymers. Journal of Applied Polymer
Science 96(4): 1122-1125.
Leow, D.,
Chen, Y.H., Hung, T.H., Su, Y. & Lin, Y.Z. 2014. Photodriven
transfer hydrogenation of olefins. European Journal of Organic
Chemistry 2014(33): 7347-7352.
Lundstedt, T.,
Seifert, E., Abramo, L., Thelin,
B., Nystrom, A., Pettersen, J. &
Bergman, R. 1998.
Experimental design and optimization.
Chemometrics and Intelligent Laboratory Systems
42(1): 3-40.
Mahittikul, A.,
Prasassarakich, P. & Rempel, G.L.
2007. Diimide hydrogenation of natural rubber
latex. Journal of Applied Polymer Science 105(3):
1188-1199.
Naharullah, J., Muhammad Jefri, M.Y. & Siti Fairus, M.Y. 2016. Synthesis, characterization, and properties
of hydrogenated liquid natural rubber. Rubber Chemistry and
Technology 89(2): 227-239.
Nor,
H.M. & Ebdon, J.R. 1998. Telechelic
liquid natural rubber: A review. Progress in Polymer Science
23(2): 143-177.
Nur Hanis
Adila, A., Naharullah,
J., Hamizah, M.R., Muhammad Jefri, M.Y.
& Siti Fairus,
M.Y. 2015. Studies on hydrogenation of liquid
natural rubber using diimide.
International Journal of Polymer Science 2015: 1-6.
Ou, H.,
Wang, Y., Zhou, W. & Peng, X. 2016. Kinetics investigation
on the hydrogenation of acrylonitrile-butadiene rubber latex
by using new catalytic reaction system. Catalysis
Communications 84: 183-187.
Pisuttisap, A., Hinchiranan, N., Rempel, G.L. & Prasassarakich,
P. 2012. ABS modified with hydrogenated polystyrene-grafted-natural
rubber. Journal of Applied Polymer Science 129: 94-104.
Piya-areetham, P.,
Rempel, G.L. & Prasassarakich,
P. 2014. Hydrogenated
nanosized polyisoprene
as a thermal and ozone stabilizer for natural rubber blends.
Polymer Degradation and Stability 102(1): 112-121.
Ravindran, T.,
Nayar, M.R. & Francis, D.J. 1986. A novel method for the
preparation of hydroxyl terminated liquid natural rubber. Macromolecular
Rapid Communication 7(3): 159-163.
Samran, J., Phinyocheep, P., Daniel, P. & Kittipoom,
S. 2005. Hydrogenation of unsaturated rubbers
using diimide as a reducing agent. Journal of Applied
Polymer Science 95(1): 16-27.
Sakdapipanich, J., Suksawad, P., Insom, K. & Kawahara,
S. 2005. Preparation of functionalized low
molecular weight natural rubber latex using solid nanometric
TiO3 film as a photocatalyst.
Rubber Chemistry and Technology 78(4): 597-605.
Simma, K., Rempel, G.L. &
Prasassarakich, P. 2009. Improving
thermal and ozone stability of skim natural rubber by diimide
reduction. Polymer Degradation and Stability 94(11):
1914- 1923.
Siti Zaleha, I., Rusiyah, Y., Aziz, H.
& Tahir, M. 2007.
The influence of temperature and reaction
time in the degradation of natural rubber latex. Malaysian
Journal of Analytical Sciences 11(1): 42-48.
Schulz,
G.A., Comin, E. & de Souza, R.F. 2012. Kinetics of the
hydrogenation of NBR by hydrazine and oxygen, using selenium
as a catalyst. Journal of Applied Polymer Science
123(6): 3605-3609.
Suhawati, I.,
Rusli, D. & Ibrahim, A. 2014. Functionalization
of liquid natural rubber via oxidative degradation of natural
rubber. Polymers 6(12): 2928-2941.
Wang,
X., Zhang, L., Han, Y., Shi, X., Wang, W. & Yue, D. 2013. New
method for hydrogenating NBR latex. Journal of Applied
Polymer Science 127(6): 4764-4768.
Wideman, L.G. 1984. Heating with Oxidant, Hydrazine and Metal Salt. U.S. Patent 4452950 A.
Yusof, M.J.M.,
Abdullah, I. & M Yusoff, S.F.
2017. Sintesis dan
pencirian getah
asli cecair terhidrogen
untuk adunan
polimer. Sains
Malaysiana 46(10): 1817-1823.
Zhou,
S., Bai, H. & Wang, J. 2003. Hydrogenation
of acrylonitrile-butadiene rubber latexes. Journal
of Applied Polymer Science 91(4): 2072-2078.
*Corresponding
author; email: sitifairus@ukm.edu.my