Sains Malaysiana 47(9)(2018): 2083–2090

http://dx.doi.org/10.17576/jsm-2018-4709-16

 

Synthesis and X-Ray Single Crystal Study of 5-(4,4,5,5Tetramethyl – 1,3,2 –Dioxoborolane) – 10,20 – Diphenylporphyrin

(Sintesis dan Kajian Sinar-X Hablur Tunggal 5-(4,4,5,5-tetrametil- 1,3,2-dioxoborolana)-10,20-difenilporfirin)

 

NUUR HAZIQAH MOHD RADZUAN1, NAWWAR HANUN ABDUL MALEK1, MOHAMMAD FADZLEY NGATIMAN2, TAN KE XIN3, MOHD BAKRI BAKAR3, NURUL IZZATY HASSAN1

& MUNTAZ ABU BAKAR1*

 

1School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Centre for Research and Instrumentation Management, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor, Johor Bahru, Johor Darul Takzim, Malaysia

 

Received: 30 March 2018/Accepted: 17 May 2018

 

 

ABSTRACT

Borylated porphyrin is one of building blocks in coupling reactions to obtain the multiporphyrin containing two, three or more subunits of porphyrins. In this study, one of borylated porphyrin derivatives, 5-(4,4,5,5tetramethyl – 1,3,2 – dioxoborolane) -10,20 – diphenylporphyrin (B-DPP) was synthesized through four steps of reactions. The building block of porphyrin, dipyrromethane was synthesized through a condensation reaction in the presence of trifluoroacetic acid as catalyst. Subsequently, A2B2 type of porphyrin was obtained by Lindsey condensation reaction followed by bromination reaction to produce porphyrin halide. Suzuki cross coupling reaction between porphyrin halide and pinacolborane with Pd (II) catalyst afforded 40% of borylayed porphyrin. The product was successfully characterized by using nuclear magnetic resonance spectroscopy (NMR) and UV-Visible spectroscopy (UV-Vis). This compound crystallized from a mixture of dichloromethane/methanol to give violet needle-like crystal. Crystallographic studies showed this compound crystallized in monoclinic system with space group of P21/c.

 

Keywords: Borylated porphyrin; porphyrin; Suzuki cross coupling; X-ray structural study

 

ABSTRAK

Sebatian porfirin borilasi merupakan salah satu blok binaan dalam tindak balas penggandingan untuk mendapatkan sebatian multiporfirin yang terdiri daripada dua, tiga atau lebih unit porfirin. Melalui kajian ini, salah satu terbitan sebatian porfirin borilasi, 5-(4,4,5,5-tetrametil-1,3,2-dioxoborolana)-10,20-difenilporfirin (B-DPP) telah disintesis melalui empat langkah tindak balas. Blok binaan asas iaitu dipirometana disintesis melalui tindak balas penyejatan dengan kehadiran asid trifloroasetik, selaku mangkin. Porfirin jenis A2B2 diperoleh melalui tindak balas penyejatan Lindsey dan diikuti dengan tindak balas pembrominan untuk menghasilkan sebatian porfirin halida. Tindak balas penggandingan Suzuki antara sebatian porfirin halida dan pinakolborona menggunakan bahan pemangkin Pd (II) menghasilkan 40% sebatian porfirin borilasi. Sebatian ini telah berjaya dicirikan dengan menggunakan teknik resonans magnetik nuklear (RMN) dan spektroskopi ultra-lembayung boleh nampak (UL-BN). Sebatian ini menghablur daripada sistem campuran pelarut diklorometana/methanol dan menghasilkan kristal jejarum berwarna ungu. Kajian kristalografi menunjukkan sebatian ini terhablur dalam sistem monoklinik dengan kumpulan ruang P21/c.

 

Kata kunci: Kajian struktur sinar-X; porfirin; porfirin borilasi; tindak balas penggandingan Suzuki

REFERENCES

Aratani, N., Cho, H.S., Ahn, T.K., Cho, S., Kim, D., Sumi, H. & Osuka, A. 2003. Efficient excitation energy transfer in long meso-meso linked zn(ii) porphyrin arrays bearing a 5,15-bisphenylethynylated zn(ii) porphyrin acceptor. J. Am. Chem. Soc. 125: 9668.

Basic, B. 2010. Azo and butadiyne- linked 5,10-diarylporphyrin. Thesis Ph.D. Faculty of Science and Technology, Queensland University of Technology (Unpublished).

Boyle, R.W., Brückner, C., Posakony, J.J., James, B.R. & Dolphin, D. 1999. Synthesis of 5,15-Diphenylporphyrin. Org. Synth. 76: 287-293.

Brückner, C., Posakony, J.J., Johnson, C.K., Boyle, R.W., James, B.R. & Dolphin, D. 1998. Novel and improved syntheses of 5,15-diphenylporphyrin and its dipyrrolic precursors. J. Porphyrins Phthalocyanines 2(6): 455-465.

Dimagno, S.G., Lin, V.S.Y. & Therien, M.J. 1993. Facile eloboration of porphyrin via metal-mediated cross-coupling. J. Organic Chem. 58(22): 5983-5993.

Giovannetti, R. 2012. The use of spectrophotometry uv-vis for the study of porphyrins. In Macro to Nano Spectrometry edited by Jamal Uddin. University of Camerino, Chemistry Section of School of Environmental Sciences, Camerino Italy. pp. 88-103.

Hata, H., Yamaguchi, S., Mori, G., Nakazono, S., Katoh, T., Takatsu, K., Hiroto, S., Shinokubo, H. & Osuka, A. 2007. Regioselective borylation of porphyrins by c-h bond activation under iridium catalysis to afford useful building blocks for porphyrin assemblies. Chem. Asian J. 2: 849.

Hyslop, A.G., Kellet, M.A., Iovine, P.M. & Therien, M.J. 1998. Suzuki pophyrins: New synthons for the fabrication of porphyrin-containing supramolecular assemblies. J. Am. Chem. Soc. 120: 12676-12677.

Joydev, K.L., Dhanalekshmi, S., Taniguchi, M., Ambroise, A. & Lindsey, J.S. 2003. A scalable synthesis of meso-substituted dipyrromethanes. American Chemical Society 7(6): 799-812.

Kato, A., Hartnell, R.D., Yamashita, M., Miyasaka, H., Sugiura, K. & Arnold, D.P. 2004. Selective meso-monobromination of 5,15-diarylporphyrin via organopalladium porphyrins. Journal of Porphyrins and Phthalocyanine 8(10): 1222-1227.

Lindsey, J.S. 2000. The Porphyrin Handbooks. San Diego: Academic Press.

Locos, O.B. & Arnold, D.P. 2006. The heck reaction for porphyrin functionalisation: Synthesis of meso-alkenyl monoporphyrins and palladium-catalysed formation of unprecedented meso–β ethene-linked diporphyrins. Org. Biomol. Chem. 4: 902.

Muntaz, A.B., Sergeeva, N.N., Juillard, T. & Senge, M.O. 2011. Synthesis of ferrocenyl porphyrins via suzuki coupling and their photophysical properties. Organometallics 30: 3225- 3228.

Murata, M., Watanabe, S. & Masuda, Y. 1997. Novel palladium (0)-catalyzed coupling reaction of dialkoxyborane with aryl halides: Convenient synthetic route to arylboronated. J. Org. Chem. 62: 6458-6459.

Nishiyabu, R., Kubo, Y., James, T.D. & Fosseycd, J.S. 2011. Boronic acid building blocks: Tools for self-assembly. Chem. Communication 47: 1124-1150.

Prakash, K. & Sankar, M. 2017. Borylated porphyrin and its metal complexes: Synthesis, electrochemistry and deprotection-protection strategy for anion sensing. Sensors and Actuators B 240: 709-717.

Yedukondalu, M. & Ravikanth, M. 2010. Borylated thiaporphyrin building blocks for the synthesis of unsymmetrical phenyl-bridged porphyrin dyads. SYNLETT 1: 0067-0072.

 

 

*Corresponding author; email: muntaz@ukm.edu.my

 

 

 

 

 

 

 

 

previous