Sains Malaysiana 47(9)(2018): 2171–2178
http://dx.doi.org/10.17576/jsm-2018-4709-27
Puncture Resistance and Mechanical Properties of Graphene Oxide Reinforced
Natural Rubber Latex
(Rintangan Tusukan
dan Sifat
Mekanik Lateks Getah Asli Berpengisi
Oksida Grafin)
KAI YIN CHONG1,
CHIN
HUA
CHIA1*,
SARANI
ZAKARIA1,
THI
HAO
PHAM2,
DAVID
LUCAS2
& SIEW XIAN CHIN3
1Materials Science Program,
Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Medical Solutions Innovation
Centre (R&D), Ansell N.P. Sdn.
Bhd., Lot 80, Ayer Keroh Industrial
Estate, 75450 Melaka, Malaysia
3ASASIpintar Program,
Pusat PERMATApintar® Negara, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received:
26 March 2018/Accepted: 23 May 2018
ABSTRACT
Natural rubber (NR) latex gloves are widely used
as a very important barrier for healthcare workers. However,
they can still be perforated easily by sharp devices and instruments.
The aim of this study was to investigate the effect of the addition
of graphene oxide (GO)
to low-ammonia NR latex on its puncture resistance,
mechanical properties and thermal stability. GO was
synthesized using modified Hummers’ reaction. The produced GO was
mixed into the NR latex solution at various doses (0.01-1.0
wt. %), followed by a coagulant dipping process using ceramic
plates to produce film samples. Puncture resistance was enhanced
by 12% with 1.0 wt. % GO/NR.
Also, the incorporation of GO improved the stress at 300%
and 500%, the modulus at 300% and 500% and the tear strength
of low-ammonia NR
latex films.
Keywords: Graphene oxide; natural rubber latex; puncture;
tear strength; tensile strength
ABSTRAK
Sarung tangan lateks getah
asli telah
digunakan meluas sebagai perlindungan yang penting bagi pekerja
penjagaan perubatan. Namun sarung
tangan lateks
getah asli masih
mudah tertusuk
oleh benda runcing
dan tajam.
Objektif kajian ini adalah
untuk mengkaji
kesan penambahan grafin oksida ke
atas rintangan
tusukan, sifat mekanik dan kestabilan
terma. Dalam kajian ini, GO
telah disintesis dengan menggunakan kaedah Hummers terubah suai. Kuantiti GO
yang berlainan (0.01-1.0
% bt.) telah dicampur ke dalam
lateks getah
asli dan sampel
filem dihasilkan
melalui proses pencelupan. Keputusan yang diperoleh telah menunjukkan peningkatan yang ketara sebanyak 12% bagi sampel 1.0 % bt.
GO/NR
dalam rintangan
tusukan. Selain
itu, penambahan GO dalam NR juga turut
meningkatkan tegasan
pada 300%, tegasan pada 500%, modulus pada 300% dan 500% serta cabikan.
Kata kunci: Cabikan;
grafin oksida;
kekuatan tegangan; lateks getah asli;
penusukan
REFERENCES
Bai, X., Wan, C., Zhang, Y.
& Zhai, Y. 2011. Reinforcement of hydrogenated carboxylated
nitrile-butadiene rubber with exfoliated graphene oxide.
Carbon 49(5): 1608-1613.
Bhawal, P., Ganguly, S., Chaki,
T.K. & Das, N.C. 2016. Synthesis and characterization
of graphene oxide filled ethylene methyl acrylate hybrid nanocomposites.
RSC Adv. 6(25): 20781- 20790.
Bricout, F., Moraillon, A., Sonntag, P., Hoerner, P., Blackwelder, W. &
Plotkin, S. 2003. Virus-inhibiting surgical glove to reduce the
risk of infection by enveloped viruses. Journal of
Medical Virology 69(4): 538-545.
Guo, C., Zhou, L. & Lv, J. 2013. Effects of expandable graphite and modified ammonium
polyphosphate on the flame-retardant and mechanical properties
of wood flour-polypropylene composites.
Polymers and Polymer Composites 21(7): 449-456.
Chacko, J. & Isaac, R.
2007. Percutaneous injuries among medical interns and
their knowledge & practice of post-exposure prophylaxis
for HIV. Indian Journal of Public Health 51(2):
127-129.
Cheng, H.K.F., Sahoo, N.G., Tan, Y.P., Pan, Y., Bao,
H., Li, L., Chan, S.H. & Zhao, J. 2012. Poly(vinyl alcohol) nanocomposites filled with poly(vinyl alcohol)-grafted
graphene oxide. ACS Applied Materials and Interfaces 4(5):
2387-2394.
Cui, Y., Kundalwal, S.I. & Kumar, S.
2016. Gas barrier performance of graphene/polymer
nanocomposites. Carbon 98: 313-333.
Das, S., Wajid, A.S., Shelburne, J.L.,
Liao, Y.C. & Green, M.J. 2011. Localized
in situ polymerization on graphene surfaces for stabilized
graphene dispersions. ACS Applied Materials and Interfaces
3(6): 1844-1851.
Dong, B., Zhang, L. & Wu,
Y. 2017. Influences of different
dimensional carbon-based nanofillers
on fracture and fatigue resistance of natural rubber composites.
Polymer Testing 63: 281-288.
Dong, B., Liu, C., Zhang, L.
& Wu, Y. 2015. Preparation,
fracture, and fatigue of exfoliated graphene oxide/natural rubber
composites. RSC Adv. 5(22): 17140-17148.
Forati, T., Atai, M., Rashidi,
A.M., Imani, M. & Behnamghader,
A. 2014. Physical and mechanical properties of graphene
oxide/polyethersulfone nanocomposites.
Polymers for Advanced Technologies 25(3): 322-328.
Guan, Y., Meyers, K.P., Mendon,
S.K., Hao, G., Douglas, J.R., Trigwell, S., Nazarenko, S.I., Patton,
D.L. & Rawlins, J.W. 2016. Ecofriendly fabrication of modified graphene oxide latex nanocomposites
with high oxygen barrier performance. ACS Applied
Materials and Interfaces 8(48): 33210-33220.
Hernández, M., del Mar Bernal, M., Verdejo, R., Ezquerra, T.A. &
López-Manchado, M.A. 2012. Overall
performance of natural rubber/graphene nanocomposites.
Composites Science and Technology 73(1): 40-46.
Huang, N., Lim, H., Chia, C.H.,
Yarmo, M.A. & Muhamad, M. 2011. Simple room-temperature preparation of high-yield
large-area graphene oxide. International Journal of
Nanomedicine 6: 3443-3448.
Javed, S.I. & Hussain, Z. 2015. Covalently functionalized graphene oxide-characterization and its
electrochemical performance. International Journal
of Electrochemical Science 10(11): 9475-9487.
Kang, H., Tang, Y., Yao, L., Yang, F., Fang, Q. & Hui, D. 2017. Fabrication of graphene/natural rubber nanocomposites
with high dynamic properties through convenient mechanical mixing.
Composites Part B: Engineering 112: 1-7.
Karl Booten, G., Yatim, A.H.B. & Singh,
M. 2010. Natural Rubber Latex Preservation.
United States Patent Application Publication
US 2010/02.
Kim, K.H., Yang, M., Cho, K.M.,
Jun, Y.S., Lee, S.B. & Jung, H.T. 2013. High quality reduced graphene oxide through repairing with multi-layered
graphene ball nanostructures. Scientific Reports 3: 3251.
Krishnamoorthy, K., Veerapandian, M., Yun, K. & Kim,
S.J. 2013. The chemical and structural
analysis of graphene oxide with different degrees of oxidation.
Carbon 53: 38-49.
Kuroyanagi, N., Nagao, T., Sakuma, H., Miyachi, H.,
Ochiai, S., Kimura, Y., Fukano,
H. & Shimozato, K. 2012. Risk
of surgical glove perforation in oral and maxillofacial surgery.
International Journal of Oral and Maxillofacial Surgery 41(8):
1014-1019.
Leslie, L.F., Woods, J.A.,
Thacker, J.G., Morgan, R.F., McGregor, W. & Edlich,
R.F. 1996. Needle puncture
resistance of surgical gloves, finger guards, and glove liners.
Journal of Biomedical Materials Research Part A 33(1):
41-46.
Liu, L.H., Lerner, M.M. & Yan, M. 2010.
Derivitization of pristine graphene with well-defined chemical functionalities.
Nano Letters 10(9): 3754-3756.
Makama, J.G., Okeme, I.M., Makama,
E.J. & Ameh, E.A. 2016. Glove perforation rate in surgery: A randomized, controlled study
to evaluate the efficacy of double gloving. Surgical Infections
17(4): 436-442.
Manson, T.T., Bromberg, W.G., Thacker, J.G., McGregor, W., Morgan,
R.F. & Edlich, R.F. 1995. A
new glove puncture detection system. The Journal of
Emergency Medicine 13(3): 357-364.
Mao, Y., Zhang, S., Zhang,
D., Chan, T.W. & Liu, L. 2014. Enhancing graphene oxide reinforcing potential in composites by combined
latex compounding and spray drying. Materials
Research Express 1(2).
Mao, Y., Wen, S., Chen, Y.,
Zhang, F., Panine, P., Chan, T.W.,
Zhang, L., Liang, Y. & Liu, L. 2013. High performance graphene
oxide based rubber composites. Scientific Reports 3:
2508.
Mensah, B., Kim, S., Arepalli, S. &
Nah, C. 2014. A study of graphene oxide-reinforced
rubber nanocomposite. Journal of Applied Polymer Science
131(16): 1-9.
Moghaddam, S.Z., Sabury, S. & Sharif, F. 2014. Dispersion of rGO in polymeric matrices
by thermodynamically favorable self-assembly of GO at oil-water
Interfaces. RSC Advances 4(17): 8711-8719.
Nanda, S.S., Yi, D.K. &
Kim, K. 2016. Study of antibacterial mechanism of graphene
oxide using raman
spectroscopy. Scientific Reports 6: 28443.
Nguyen, C., Vu-Khanh, T. & Lara, J. 2004. Puncture characterization of rubber membranes. Theoretical and
Applied Fracture Mechanics 42(1): 25-33.
Noël, A., Faucheu, J., Chenal, J.M., Viricelle, J.P. & Bourgeat-
Lami, E. 2014. Electrical and mechanical percolation in graphene-latex nanocomposites.
Polymer (United Kingdom) 55(20): 5140-5145.
Park, O.K., Kim, S.G., You, N.H., Ku, B.C., Hui, D. & Lee, J.H.
2014. Synthesis and properties of iodo
functionalized graphene oxide/polyimide nanocomposites. Composites
Part B: Engineering 56: 365-371.
Prüss-Üstün, A., Rapiti, E. & Hutin, Y.J. 2003. Sharps
injuries: Global burden of disease from sharps injuries to health-care
workers. Environmental Burden of
Disease Series No. 3. World
Health Organization.
Shao, G., Lu, Y., Wu, F., Yang, C., Zeng, F. & Wu, Q. 2012. Graphene
oxide: The mechanisms of oxidation and exfoliation. Journal
of Materials Science 47(10): 4400-4409.
Valls, V., Lozano, M.S.,
Yánez, R., Martínez, M.J., Pascual, F., Lloret, J. & Ruiz,
J.A. 2007. Use of safety devices and the prevention of percutaneous
injuries among healthcare workers. Infection Control
and Hospital Epidemiology 28(12): 1352-1360.
Vuluga, D., Thomassin, J.M., Molenberg, I., Huynen,
I., Gilbert, B., Jerome, C., Alexandre, M. & Detrembleur,
C. 2011. Straightforward synthesis of conductive graphene/
polymer nanocomposites from graphite oxide. Chemical
Communications 47(9): 2544-2546.
Wang, L., Cui, Y., Li, B., Yang, S., Li, R., Liu, Z., Vajtai, R. & Fei, W. 2015. High apparent strengthening efficiency for reduced graphene oxide
in copper matrix composites produced by molecule-lever mixing
and high-shear mixing. RSC Advances 5(63): 51193-51200.
Wang, T.,
Gui, H.X., Zhang, W.F., Zhang, K.X.,
Yu, W.Q., Li, Y.M., Zeng, R.Z. & Huang, M.F. 2015. Novel
nonammonia preservative for concentrated
natural rubber latex. Journal of Applied Polymer Science
132(15): 6-11.
Wissert, R., Steurer, P., Schopp, S., Thomann, R. & Mülhaupt, R. 2010. Graphene nanocomposites prepared from blends of polymer latex with
chemically reduced graphite oxide dispersions. Macromolecular
Materials and Engineering 295(12): 1107-1115.
Wu, J., Huang, G., Li, H., Wu, S., Liu, Y. & Zheng, J. 2013. Enhanced mechanical and gas barrier properties of rubber nanocomposites
with surface functionalized graphene oxide at low content.
Polymer 54(7): 1930-1937.
Wu, R., Wang, Y., Chen, L., Huang, L. & Chen, Y. 2015. Control of the oxidation level of graphene oxide for high efficiency
polymer solar cells. RSC Advances 5(61): 49182-49187.
Wu, X., Lin, T.F., Tang, Z.H., Guo, B.C.
& Huang, G.S. 2015. Natural rubber/graphene oxide composites: Effect of sheet size on
mechanical properties and straininduced
crystallization behavior. Express Polymer Letters 9(8):
672-685.
Xiong, X., Wang, J., Jia, H., Fang, E. & Ding, L. 2013. Structure, thermal conductivity, and thermal stability of bromobutyl rubber nanocomposites with ionic liquid modified
graphene oxide. Polymer Degradation and Stability
98(11): 2208-2214.
Yang, D.,
Velamakanni, A., Bozoklu, G., Park,
S., Stoller, M., Piner,
R.D., Stankovich, S., Jung, I., Field,
D.A. & Ventrice, C.A. 2009. Chemical analysis of graphene oxide films
after heat and chemical treatments by x-ray photoelectron and
micro-raman spectroscopy. Carbon 47(1): 145-152.
Yaragalla, S., Meera, A.P., Kalarikkal,
N. & Thomas, S. 2015. Chemistry associated with natural
rubber-graphene nanocomposites and its effect on physical and
structural properties. Industrial Crops and Products 74:
792-802.
Yin, B., Zhang, X., Zhang, X., Wang, J., Wen, Y., Jia, H., Ji, Q. & Ding, L. 2017. Ionic liquid
functionalized graphene oxide for enhancement of styrene-butadiene
rubber nanocomposites. Polymers for Advanced Technologies
28(3): 293-302.
Yin, B., Wang, J., Jia, H., He, J., Zhang,
X. & Xu, Z. 2016. Enhanced mechanical properties and thermal
conductivity of styrene-butadiene rubber reinforced with polyvinylpyrrolidone-modified graphene oxide. Journal of
Materials Science 51(12): 5724-5737
. Yip, E. & Cacioli, P. 2002. The manufacture of gloves
from natural rubber latex. Journal of Allergy and
Clinical Immunology 110(2): S3-S14.
You, S., Luzan, S.M., Szabó, T. & Talyzin, A.V. 2013. Effect of synthesis
method on solvation and exfoliation of graphite oxide.
Carbon 52: 171-180.
Zhang,
C., Zhai, T., Dan, Y. & Turng,
L.S. 2016.
Reinforced natural rubber nanocomposites using
graphene oxide as a reinforcing agent and their in situ reduction
into highly conductive materials. Polymer Composites
38: 199-207.
Zhu, Y., Murali, S., Cai,
W., Li, X., Suk, J.W., Potts, J.R. & Ruoff,
R.S. 2010. Graphene and graphene oxide: Synthesis, properties,
and applications. Advanced Materials 22(35): 3906-3924.
*Corresponding author;
email: chia@ukm.edu.my