Sains Malaysiana 47(9)(2018): 2171–2178

http://dx.doi.org/10.17576/jsm-2018-4709-27

 

Puncture Resistance and Mechanical Properties of Graphene Oxide Reinforced Natural Rubber Latex

(Rintangan Tusukan dan Sifat Mekanik Lateks Getah Asli Berpengisi Oksida Grafin)

 

 

KAI YIN CHONG1, CHIN HUA CHIA1*, SARANI ZAKARIA1, THI HAO PHAM2, DAVID LUCAS2 & SIEW XIAN CHIN3

 

1Materials Science Program, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Medical Solutions Innovation Centre (R&D), Ansell N.P. Sdn. Bhd., Lot 80, Ayer Keroh Industrial Estate, 75450 Melaka, Malaysia

 

3ASASIpintar Program, Pusat PERMATApintar® Negara, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 26 March 2018/Accepted: 23 May 2018

 

ABSTRACT

Natural rubber (NR) latex gloves are widely used as a very important barrier for healthcare workers. However, they can still be perforated easily by sharp devices and instruments. The aim of this study was to investigate the effect of the addition of graphene oxide (GO) to low-ammonia NR latex on its puncture resistance, mechanical properties and thermal stability. GO was synthesized using modified Hummers’ reaction. The produced GO was mixed into the NR latex solution at various doses (0.01-1.0 wt. %), followed by a coagulant dipping process using ceramic plates to produce film samples. Puncture resistance was enhanced by 12% with 1.0 wt. % GO/NR. Also, the incorporation of GO improved the stress at 300% and 500%, the modulus at 300% and 500% and the tear strength of low-ammonia NR latex films.

 

Keywords: Graphene oxide; natural rubber latex; puncture; tear strength; tensile strength

 

ABSTRAK

Sarung tangan lateks getah asli telah digunakan meluas sebagai perlindungan yang penting bagi pekerja penjagaan perubatan. Namun sarung tangan lateks getah asli masih mudah tertusuk oleh benda runcing dan tajam. Objektif kajian ini adalah untuk mengkaji kesan penambahan grafin oksida ke atas rintangan tusukan, sifat mekanik dan kestabilan terma. Dalam kajian ini, GO telah disintesis dengan menggunakan kaedah Hummers terubah suai. Kuantiti GO yang berlainan (0.01-1.0 % bt.) telah dicampur ke dalam lateks getah asli dan sampel filem dihasilkan melalui proses pencelupan. Keputusan yang diperoleh telah menunjukkan peningkatan yang ketara sebanyak 12% bagi sampel 1.0 % bt. GO/NR dalam rintangan tusukan. Selain itu, penambahan GO dalam NR juga turut meningkatkan tegasan pada 300%, tegasan pada 500%, modulus pada 300% dan 500% serta cabikan.

 

Kata kunci: Cabikan; grafin oksida; kekuatan tegangan; lateks getah asli; penusukan

 

REFERENCES

 

Bai, X., Wan, C., Zhang, Y. & Zhai, Y. 2011. Reinforcement of hydrogenated carboxylated nitrile-butadiene rubber with exfoliated graphene oxide. Carbon 49(5): 1608-1613.

Bhawal, P., Ganguly, S., Chaki, T.K. & Das, N.C. 2016. Synthesis and characterization of graphene oxide filled ethylene methyl acrylate hybrid nanocomposites. RSC Adv. 6(25): 20781- 20790.

Bricout, F., Moraillon, A., Sonntag, P., Hoerner, P., Blackwelder, W. & Plotkin, S. 2003. Virus-inhibiting surgical glove to reduce the risk of infection by enveloped viruses. Journal of Medical Virology 69(4): 538-545.

Guo, C., Zhou, L. & Lv, J. 2013. Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polymers and Polymer Composites 21(7): 449-456.

Chacko, J. & Isaac, R. 2007. Percutaneous injuries among medical interns and their knowledge & practice of post-exposure prophylaxis for HIV. Indian Journal of Public Health 51(2): 127-129.

Cheng, H.K.F., Sahoo, N.G., Tan, Y.P., Pan, Y., Bao, H., Li, L., Chan, S.H. & Zhao, J. 2012. Poly(vinyl alcohol) nanocomposites filled with poly(vinyl alcohol)-grafted graphene oxide. ACS Applied Materials and Interfaces 4(5): 2387-2394.

Cui, Y., Kundalwal, S.I. & Kumar, S. 2016. Gas barrier performance of graphene/polymer nanocomposites. Carbon 98: 313-333.

Das, S., Wajid, A.S., Shelburne, J.L., Liao, Y.C. & Green, M.J. 2011. Localized in situ polymerization on graphene surfaces for stabilized graphene dispersions. ACS Applied Materials and Interfaces 3(6): 1844-1851.

Dong, B., Zhang, L. & Wu, Y. 2017. Influences of different dimensional carbon-based nanofillers on fracture and fatigue resistance of natural rubber composites. Polymer Testing 63: 281-288.

Dong, B., Liu, C., Zhang, L. & Wu, Y. 2015. Preparation, fracture, and fatigue of exfoliated graphene oxide/natural rubber composites. RSC Adv. 5(22): 17140-17148.

Forati, T., Atai, M., Rashidi, A.M., Imani, M. & Behnamghader, A. 2014. Physical and mechanical properties of graphene oxide/polyethersulfone nanocomposites. Polymers for Advanced Technologies 25(3): 322-328.

Guan, Y., Meyers, K.P., Mendon, S.K., Hao, G., Douglas, J.R., Trigwell, S., Nazarenko, S.I., Patton, D.L. & Rawlins, J.W. 2016. Ecofriendly fabrication of modified graphene oxide latex nanocomposites with high oxygen barrier performance. ACS Applied Materials and Interfaces 8(48): 33210-33220.

Hernández, M., del Mar Bernal, M., Verdejo, R., Ezquerra, T.A. & López-Manchado, M.A. 2012. Overall performance of natural rubber/graphene nanocomposites. Composites Science and Technology 73(1): 40-46.

Huang, N., Lim, H., Chia, C.H., Yarmo, M.A. & Muhamad, M. 2011. Simple room-temperature preparation of high-yield large-area graphene oxide. International Journal of Nanomedicine 6: 3443-3448.

Javed, S.I. & Hussain, Z. 2015. Covalently functionalized graphene oxide-characterization and its electrochemical performance. International Journal of Electrochemical Science 10(11): 9475-9487.

Kang, H., Tang, Y., Yao, L., Yang, F., Fang, Q. & Hui, D. 2017. Fabrication of graphene/natural rubber nanocomposites with high dynamic properties through convenient mechanical mixing. Composites Part B: Engineering 112: 1-7.

Karl Booten, G., Yatim, A.H.B. & Singh, M. 2010. Natural Rubber Latex Preservation. United States Patent Application Publication US 2010/02.

Kim, K.H., Yang, M., Cho, K.M., Jun, Y.S., Lee, S.B. & Jung, H.T. 2013. High quality reduced graphene oxide through repairing with multi-layered graphene ball nanostructures. Scientific Reports 3: 3251.

Krishnamoorthy, K., Veerapandian, M., Yun, K. & Kim, S.J. 2013. The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53: 38-49.

Kuroyanagi, N., Nagao, T., Sakuma, H., Miyachi, H., Ochiai, S., Kimura, Y., Fukano, H. & Shimozato, K. 2012. Risk of surgical glove perforation in oral and maxillofacial surgery. International Journal of Oral and Maxillofacial Surgery 41(8): 1014-1019.

Leslie, L.F., Woods, J.A., Thacker, J.G., Morgan, R.F., McGregor, W. & Edlich, R.F. 1996. Needle puncture resistance of surgical gloves, finger guards, and glove liners. Journal of Biomedical Materials Research Part A 33(1): 41-46.

Liu, L.H., Lerner, M.M. & Yan, M. 2010. Derivitization of pristine graphene with well-defined chemical functionalities. Nano Letters 10(9): 3754-3756.

Makama, J.G., Okeme, I.M., Makama, E.J. & Ameh, E.A. 2016. Glove perforation rate in surgery: A randomized, controlled study to evaluate the efficacy of double gloving. Surgical Infections 17(4): 436-442.

Manson, T.T., Bromberg, W.G., Thacker, J.G., McGregor, W., Morgan, R.F. & Edlich, R.F. 1995. A new glove puncture detection system. The Journal of Emergency Medicine 13(3): 357-364.

Mao, Y., Zhang, S., Zhang, D., Chan, T.W. & Liu, L. 2014. Enhancing graphene oxide reinforcing potential in composites by combined latex compounding and spray drying. Materials Research Express 1(2).

Mao, Y., Wen, S., Chen, Y., Zhang, F., Panine, P., Chan, T.W., Zhang, L., Liang, Y. & Liu, L. 2013. High performance graphene oxide based rubber composites. Scientific Reports 3: 2508.

Mensah, B., Kim, S., Arepalli, S. & Nah, C. 2014. A study of graphene oxide-reinforced rubber nanocomposite. Journal of Applied Polymer Science 131(16): 1-9.

Moghaddam, S.Z., Sabury, S. & Sharif, F. 2014. Dispersion of rGO in polymeric matrices by thermodynamically favorable self-assembly of GO at oil-water Interfaces. RSC Advances 4(17): 8711-8719.

Nanda, S.S., Yi, D.K. & Kim, K. 2016. Study of antibacterial mechanism of graphene oxide using raman spectroscopy. Scientific Reports 6: 28443.

Nguyen, C., Vu-Khanh, T. & Lara, J. 2004. Puncture characterization of rubber membranes. Theoretical and Applied Fracture Mechanics 42(1): 25-33.

Noël, A., Faucheu, J., Chenal, J.M., Viricelle, J.P. & Bourgeat- Lami, E. 2014. Electrical and mechanical percolation in graphene-latex nanocomposites. Polymer (United Kingdom) 55(20): 5140-5145.

Park, O.K., Kim, S.G., You, N.H., Ku, B.C., Hui, D. & Lee, J.H. 2014. Synthesis and properties of iodo functionalized graphene oxide/polyimide nanocomposites. Composites Part B: Engineering 56: 365-371.

Prüss-Üstün, A., Rapiti, E. & Hutin, Y.J. 2003. Sharps injuries: Global burden of disease from sharps injuries to health-care workers. Environmental Burden of Disease Series No. 3. World Health Organization.

Shao, G., Lu, Y., Wu, F., Yang, C., Zeng, F. & Wu, Q. 2012. Graphene oxide: The mechanisms of oxidation and exfoliation. Journal of Materials Science 47(10): 4400-4409.

Valls, V., Lozano, M.S., Yánez, R., Martínez, M.J., Pascual, F., Lloret, J. & Ruiz, J.A. 2007. Use of safety devices and the prevention of percutaneous injuries among healthcare workers. Infection Control and Hospital Epidemiology 28(12): 1352-1360.

Vuluga, D., Thomassin, J.M., Molenberg, I., Huynen, I., Gilbert, B., Jerome, C., Alexandre, M. & Detrembleur, C. 2011. Straightforward synthesis of conductive graphene/ polymer nanocomposites from graphite oxide. Chemical Communications 47(9): 2544-2546.

Wang, L., Cui, Y., Li, B., Yang, S., Li, R., Liu, Z., Vajtai, R. & Fei, W. 2015. High apparent strengthening efficiency for reduced graphene oxide in copper matrix composites produced by molecule-lever mixing and high-shear mixing. RSC Advances 5(63): 51193-51200.

Wang, T., Gui, H.X., Zhang, W.F., Zhang, K.X., Yu, W.Q., Li, Y.M., Zeng, R.Z. & Huang, M.F. 2015. Novel nonammonia preservative for concentrated natural rubber latex. Journal of Applied Polymer Science 132(15): 6-11.

Wissert, R., Steurer, P., Schopp, S., Thomann, R. & Mülhaupt, R. 2010. Graphene nanocomposites prepared from blends of polymer latex with chemically reduced graphite oxide dispersions. Macromolecular Materials and Engineering 295(12): 1107-1115.

Wu, J., Huang, G., Li, H., Wu, S., Liu, Y. & Zheng, J. 2013. Enhanced mechanical and gas barrier properties of rubber nanocomposites with surface functionalized graphene oxide at low content. Polymer 54(7): 1930-1937.

Wu, R., Wang, Y., Chen, L., Huang, L. & Chen, Y. 2015. Control of the oxidation level of graphene oxide for high efficiency polymer solar cells. RSC Advances 5(61): 49182-49187.

Wu, X., Lin, T.F., Tang, Z.H., Guo, B.C. & Huang, G.S. 2015. Natural rubber/graphene oxide composites: Effect of sheet size on mechanical properties and straininduced crystallization behavior. Express Polymer Letters 9(8): 672-685.

Xiong, X., Wang, J., Jia, H., Fang, E. & Ding, L. 2013. Structure, thermal conductivity, and thermal stability of bromobutyl rubber nanocomposites with ionic liquid modified graphene oxide. Polymer Degradation and Stability 98(11): 2208-2214.

Yang, D., Velamakanni, A., Bozoklu, G., Park, S., Stoller, M., Piner, R.D., Stankovich, S., Jung, I., Field, D.A. & Ventrice, C.A. 2009. Chemical analysis of graphene oxide films after heat and chemical treatments by x-ray photoelectron and micro-raman spectroscopy. Carbon 47(1): 145-152.

Yaragalla, S., Meera, A.P., Kalarikkal, N. & Thomas, S. 2015. Chemistry associated with natural rubber-graphene nanocomposites and its effect on physical and structural properties. Industrial Crops and Products 74: 792-802.

Yin, B., Zhang, X., Zhang, X., Wang, J., Wen, Y., Jia, H., Ji, Q. & Ding, L. 2017. Ionic liquid functionalized graphene oxide for enhancement of styrene-butadiene rubber nanocomposites. Polymers for Advanced Technologies 28(3): 293-302.

Yin, B., Wang, J., Jia, H., He, J., Zhang, X. & Xu, Z. 2016. Enhanced mechanical properties and thermal conductivity of styrene-butadiene rubber reinforced with polyvinylpyrrolidone-modified graphene oxide. Journal of Materials Science 51(12): 5724-5737

. Yip, E. & Cacioli, P. 2002. The manufacture of gloves from natural rubber latex. Journal of Allergy and Clinical Immunology 110(2): S3-S14.

You, S., Luzan, S.M., Szabó, T. & Talyzin, A.V. 2013. Effect of synthesis method on solvation and exfoliation of graphite oxide. Carbon 52: 171-180.

Zhang, C., Zhai, T., Dan, Y. & Turng, L.S. 2016. Reinforced natural rubber nanocomposites using graphene oxide as a reinforcing agent and their in situ reduction into highly conductive materials. Polymer Composites 38: 199-207.

Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R. & Ruoff, R.S. 2010. Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials 22(35): 3906-3924.

 

 

*Corresponding author; email: chia@ukm.edu.my

 

 

 

 

 

 

 

 

previous