Sains Malaysiana 47(9)(2018): 2223–2230
http://dx.doi.org/10.17576/jsm-2018-4709-33
Block Hybrid Method with
Trigonometric-Fitting for Solving Oscillatory Problems
(Kaedah
Blok Hibrid dengan
Penyuaian-Trigonometri untuk Menyelesaikan Masalah Berayun)
FUDZIAH
ISMAIL2*,
SUFIA
ZULFA
AHMAD1,
YUSUF
DAUDA
JIKANTORO1,3 & NORAZAK SENU1,2
1Department of Mathematics,
Faculty of Science, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor
Darul Ehsan, Malaysia
2Institute for Mathematical
Research, Universiti Putra Malaysia,
43400 UPM Serdang, Selangor Darul
Ehsan, Malaysia
3Department of Mathematics/Computer
Science, Faculty of Science, Ibrahim Badamasi
Babangida University, P.M.B. 11,
Lapai, Nigeria
Received: 13 February
2018/Accepted: 22 May 2018
ABSTRACT
In this paper, we develop
algebraic order conditions for two-point block hybrid method
up to order five using the approach of B-series. Based on
the order conditions, we derive fifth order two-point block
explicit hybrid method for solving special second order ordinary
differential equations (ODEs),
where the existing explicit hybrid method of order five is
used to be the method at the first point. The method is then
trigonometrically fitted so that it can be suitable for solving
highly oscillatory problems arising from special second order
ODEs. The new trigonometrically-fitted block method is tested
using a set of oscillatory problems over a very large interval.
Numerical results clearly showed the superiority of the method
in terms of accuracy and execution time compared to other
existing methods in the scientific literature.
Keywords: B-Series;
explicit block hybrid method; oscillatory problems
ABSTRAK
Dalam kertas ini,
kami membangunkan syarat
peringkat aljabar kaedah blok
hibrid dua
titik sehingga peringkat kelima menggunakan pendekatan siri-B. Berdasarkan syarat peringkat tersebut, kami menerbitkan kaedah blok
hibrid tak
tersirat dua titik
peringkat kelima
untuk menyelesaikan persamaan pembezaan biasa (PPB) khas peringkat kedua, dengan kaedah hibrid
tak tersirat
sedia ada peringkat
kelima digunakan
sebagai kaedah pada titik pertama.
Kaedah
ini kemudiannya difasa-suaikan secara trigonometri supaya sesuai untuk menyelesaikan
masalah berayun
yang timbul daripada persamaan pembezaan khas peringkat kedua. Kaedah baru blok
trigonometri fasa-suai
ini diuji menggunakan
satu set masalah
berayun bagi selang
yang sangat besar.
Keputusan berangka dengan jelas menunjukkan
keunggulan kaedah
tersebut daripada segi ketepatan dan masa pengiraan berbanding kaedah sedia ada yang lain
dalam kepustakaan
saintifik.
Kata kunci: Kaedah
blok hibrid
tak tersirat;
masalah berayun; Siri-B
REFERENCES
Anake, T.A., Awoyemi, D.O. & Adesanya, A.O. 2012. One-step
implicit hybrid block method for the direct solution of general
second order ordinary differential equations, IAENG International
Journal of Applied Mathematics 42: 4.
Basem, S.A., Khalid, F. & Muhammed, I. Syam. 2006. An efficient implicit Runge-Kutta
method for second order systems. Applied Mathematics and
Computation 178(2): 229-238.
Butcher, J.C. 2008. Numerical Methods for Ordinary Differential Equations.
New York: John Wiley and Sons.
Chakravarti, P.C. & Worland, P.B. 1971. A
class of self-starting methods for the numerical solution
of yʺ = f (x,y),
BIT. Numerical Mathematics 11: 368-383.
Coleman, J.P. 2003. Order conditions for class of two-step methods
for yʺ = f (x,y).
IMA Journal of Numerical Analysis 23(2): 197-220.
Fatunla, S.O. 1995. A class of block
method for second order initial value problems. International
of Computer Mathematics 55(1-2): 119-133.
Franco, J.M. 1995. An explicit hybrid method of
Numerӧv type for second-order periodic initial-value
problems. Journal of Computational and Applied Mathematics
59: 79-90.
Franco, J.M. 2006. A
class of explicit two-step hybrid methods for second-order
IVPs. Journal of Computational and Applied Mathematics
187: 41-57.
Hairer, E., Nørsett, S.P. & Wanner, G. 2010. Solving Ordinary Differential Equations 1. Berlin: Springer-Verlag.
Hans
Van de, V. 2007. Phase-fitted and
amplification-fitted two-step hybrid methods for yʺ
= f (x,y). Journal of Computational
and Applied Mathematics 209: 33-53.
Ismail,
F., Yap, L.K. & Othman, M. 2009. Explicit and implicit
3-point block methods for solving
special second order ordinary differential equations directly.
Int. Journal of Math. Analysis
3(5): 239-254.
Jikantoro, Y.D.,
Ismail, F. & Senu, N. 2015. Zero-dissipative trigonometrically
fitted hybrid method for numerical solution of oscillatory
problems. Sains Malaysiana
44(3): 473-482.
Lambert,
J.D. & Watson, I.A. 1976. Symmetric multistep methods for
periodic initial-value problems. J. Inst. Maths.
Applics.
18: 189-202.
Papadopoulos,
D.F., Anastassi, Z.A. & Simos,
T.E. 2009. A
phase-fitted Runge-Kutta Nyström
method for the numerical solution of initial value problems
with oscillating solutions. Journal of Computer
Physics Communications 180: 1839-1846.
Rabiei, F.,
Ismail, F., Norazak, S. & Abasi,
N. 2012.
Construction of improved Runge-Kutta
Nystrӧm method for solving
second-order ordinary differential equations. World
Applied Sciences Journal 20(12): 1685-1695.
Ramos,
H., Kalogiratou, Z., Monovasilis,
Th. & Simos, T.E. 2015. An optimized two-step hybrid block
method for solving general second order initial-value problem.
Numer.
Algor.
doi
10.1007/s11075-015-0081-8.
Samat, F.,
Ismail, F. & Suleiman, M. 2012. High order explicit
hybrid methods for solving second-order ordinary differential
equations. Sains
Malaysiana 41(2): 253-260.
Simos,
T.E. 2012.
Optimizing a hybrid two-step method for
the numerical solution of the Schrӧdinger
equation and related problem with respect to phase-lag.
Journal of Applied Mathematics 2012: 1-17.
*Corresponding
author; email: fudziah_i@yahoo.com.my