Sains Malaysiana 47(9)(2018): 2223–2230

http://dx.doi.org/10.17576/jsm-2018-4709-33

 

Block Hybrid Method with Trigonometric-Fitting for Solving Oscillatory Problems

(Kaedah Blok Hibrid dengan Penyuaian-Trigonometri untuk Menyelesaikan Masalah Berayun)

 

FUDZIAH ISMAIL2*, SUFIA ZULFA AHMAD1, YUSUF DAUDA JIKANTORO1,3 & NORAZAK SENU1,2

 

1Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

2Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

3Department of Mathematics/Computer Science, Faculty of Science, Ibrahim Badamasi Babangida University, P.M.B. 11, Lapai, Nigeria

 

Received: 13 February 2018/Accepted: 22 May 2018

 

ABSTRACT

In this paper, we develop algebraic order conditions for two-point block hybrid method up to order five using the approach of B-series. Based on the order conditions, we derive fifth order two-point block explicit hybrid method for solving special second order ordinary differential equations (ODEs), where the existing explicit hybrid method of order five is used to be the method at the first point. The method is then trigonometrically fitted so that it can be suitable for solving highly oscillatory problems arising from special second order ODEs. The new trigonometrically-fitted block method is tested using a set of oscillatory problems over a very large interval. Numerical results clearly showed the superiority of the method in terms of accuracy and execution time compared to other existing methods in the scientific literature.

 

Keywords: B-Series; explicit block hybrid method; oscillatory problems

 

ABSTRAK

Dalam kertas ini, kami membangunkan syarat peringkat aljabar kaedah blok hibrid dua titik sehingga peringkat kelima menggunakan pendekatan siri-B. Berdasarkan syarat peringkat tersebut, kami menerbitkan kaedah blok hibrid tak tersirat dua titik peringkat kelima untuk menyelesaikan persamaan pembezaan biasa (PPB) khas peringkat kedua, dengan kaedah hibrid tak tersirat sedia ada peringkat kelima digunakan sebagai kaedah pada titik pertama. Kaedah ini kemudiannya difasa-suaikan secara trigonometri supaya sesuai untuk menyelesaikan masalah berayun yang timbul daripada persamaan pembezaan khas peringkat kedua. Kaedah baru blok trigonometri fasa-suai ini diuji menggunakan satu set masalah berayun bagi selang yang sangat besar. Keputusan berangka dengan jelas menunjukkan keunggulan kaedah tersebut daripada segi ketepatan dan masa pengiraan berbanding kaedah sedia ada yang lain dalam kepustakaan saintifik.

 

Kata kunci: Kaedah blok hibrid tak tersirat; masalah berayun; Siri-B

REFERENCES

Anake, T.A., Awoyemi, D.O. & Adesanya, A.O. 2012. One-step implicit hybrid block method for the direct solution of general second order ordinary differential equations, IAENG International Journal of Applied Mathematics 42: 4.

Basem, S.A., Khalid, F. & Muhammed, I. Syam. 2006. An efficient implicit Runge-Kutta method for second order systems. Applied Mathematics and Computation 178(2): 229-238.

Butcher, J.C. 2008. Numerical Methods for Ordinary Differential Equations. New York: John Wiley and Sons.

Chakravarti, P.C. & Worland, P.B. 1971. A class of self-starting methods for the numerical solution of yʺ = f (x,y), BIT. Numerical Mathematics 11: 368-383.

Coleman, J.P. 2003. Order conditions for class of two-step methods for yʺ = f (x,y). IMA Journal of Numerical Analysis 23(2): 197-220.

Fatunla, S.O. 1995. A class of block method for second order initial value problems. International of Computer Mathematics 55(1-2): 119-133.

Franco, J.M. 1995. An explicit hybrid method of Numerӧv type for second-order periodic initial-value problems. Journal of Computational and Applied Mathematics 59: 79-90.

Franco, J.M. 2006. A class of explicit two-step hybrid methods for second-order IVPs. Journal of Computational and Applied Mathematics 187: 41-57.

Hairer, E., Nørsett, S.P. & Wanner, G. 2010. Solving Ordinary Differential Equations 1. Berlin: Springer-Verlag.

Hans Van de, V. 2007. Phase-fitted and amplification-fitted two-step hybrid methods for yʺ = f (x,y). Journal of Computational and Applied Mathematics 209: 33-53.

Ismail, F., Yap, L.K. & Othman, M. 2009. Explicit and implicit 3-point block methods for solving special second order ordinary differential equations directly. Int. Journal of Math. Analysis 3(5): 239-254.

Jikantoro, Y.D., Ismail, F. & Senu, N. 2015. Zero-dissipative trigonometrically fitted hybrid method for numerical solution of oscillatory problems. Sains Malaysiana 44(3): 473-482.

Lambert, J.D. & Watson, I.A. 1976. Symmetric multistep methods for periodic initial-value problems. J. Inst. Maths. Applics. 18: 189-202.

Papadopoulos, D.F., Anastassi, Z.A. & Simos, T.E. 2009. A phase-fitted Runge-Kutta Nyström method for the numerical solution of initial value problems with oscillating solutions. Journal of Computer Physics Communications 180: 1839-1846.

Rabiei, F., Ismail, F., Norazak, S. & Abasi, N. 2012. Construction of improved Runge-Kutta Nystrӧm method for solving second-order ordinary differential equations. World Applied Sciences Journal 20(12): 1685-1695.

Ramos, H., Kalogiratou, Z., Monovasilis, Th. & Simos, T.E. 2015. An optimized two-step hybrid block method for solving general second order initial-value problem. Numer. Algor. doi 10.1007/s11075-015-0081-8.

Samat, F., Ismail, F. & Suleiman, M. 2012. High order explicit hybrid methods for solving second-order ordinary differential equations. Sains Malaysiana 41(2): 253-260.

Simos, T.E. 2012. Optimizing a hybrid two-step method for the numerical solution of the Schrӧdinger equation and related problem with respect to phase-lag. Journal of Applied Mathematics 2012: 1-17.

 

*Corresponding author; email: fudziah_i@yahoo.com.my

 

 

 

 

 

 

 

 

previous