Sains Malaysiana 47(9)(2018): 2213–2221

http://dx.doi.org/10.17576/jsm-2018-4709-32

 

Ingham Problem for Mixed Convection Flow of a Nanofluid over a Moving Vertical Plate with Suction and Injection Effects

(Masalah Ingham untuk Aliran Olakan Campuran bagi Nanobendalir terhadap Plat Telap Menegak yang Bergerak dengan Kesan Sedutan dan Semburan)

 

ANUAR JAMALUDIN1, ROSLINDA NAZAR2* & IOAN POP3

 

1Department of Mathematics, Universiti Pertahanan Nasional Malaysia, 57000 Kuala Lumpur, Federal Territory, Malaysia

 

2School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Department of Mathematics, Babeş-Bolyai University, R-400084 Cluj-Napoca, Romania

 

Received: 31 March 2018/Accepted: 22 May 2018

 

 

ABSTRACT

In this study, the effects of suction and injection on the mixed convection flow of a nanofluid, over a moving permeable vertical plate were discussed. A similarity variable was used to transform the governing equations to the ordinary differential equations, which were then solved numerically using the bvp4c programme from MATLAB. Dual solutions (upper and lower branches) were found within a certain range of the mixed convection parameter in assisting and opposing flow regions. A stability analysis was implemented to confirm that the upper branch solution was stable, while the lower branch solution was unstable.

 

Keywords: Injection; mixed convection; moving plate; nanofluid; stability analysis; suction

 

ABSTRAK

Dalam kajian ini, kesan sedutan dan semburan pada aliran olakan campuran bagi nanobendalir terhadap plat telap menegak yang bergerak dibincangkan. Pemboleh ubah keserupaan digunakan untuk menjelmakan persamaan menakluk kepada persamaan terbitan biasa dan seterusnya diselesaikan secara berangka menggunakan program bvp4c daripada MATLAB. Penyelesaian dual (cabang atas dan cabang bawah) didapati wujud dalam julat tertentu bagi parameter olakan campuran di dalam kawasan aliran membantu dan aliran menentang. Analisis kestabilan dilakukan bagi mengesahkan bahawa penyelesaian cabang atas adalah stabil, manakala penyelesaian cabang bawah adalah tidak stabil.

 

Kata kunci: Analisis kestabilan; nanobendalir; olakan campuran; plat bergerak; sedutan; semburan

REFERENCES

Abbasbandy, S., Shivanian, E., Vajravelu, K. & Kumar, S. 2017. A new approximate analytical technique for dual solutions of nonlinear differential equations arising in mixed convection heat transfer in a porous medium. Int. J. Numer. Methods Heat Fluid Flow 27(2): 486-503.

Bachok, N., Najib, N., Arifin, N.M. & Senu, N. 2016. Stability of dual solutions in boundary layer flow and heat transfer on a moving plate in a copper-water nanofluid with slip effect. WSEAS Transactions on Fluid Mechanics 11: 151-158.

Bachok, N., Ishak, A., Nazar, R. & Pop, I. 2011. Ingham problem for free convection near a continuously moving vertical permeable plate. IMA J. Appl. Math. 77(4): 578-589.

Md. Basir, M.F., Uddin, M.J. & Ismail, A. 2017. Unsteady magnetoconvective flow of bionanofluid with zero mass flux boundary condition. Sains Malaysiana 46(2): 327-333.

Buongiorno, J. 2006. Convective transport in nanofluids. J. Heat Transfer 128(3): 240-250.

Devi, C.S., Takhar, H.S. & Nath, G. 1991. Unsteady mixed convection flow in stagnation region adjacent to a vertical surface. Wärme-und Stoffübertragung 26(2): 71-79.

Ellahi, R., Tariq, M.H., Hassan, M. & Vafai, K. 2017. On boundary layer nano-ferroliquid flow under the influence of low oscillating stretchable rotating disk. J. Mol. Liq. 229: 339-345.

Harris, S.D., Ingham, D.B. & Pop, I. 2009. Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip. Transp. Porous Media 77(2): 267-285.

Hassan, M., Zeeshan, A., Majeed, A. & Ellahi, R. 2017. Particle shape effects on ferrofuids flow and heat transfer under influence of low oscillating magnetic field. J. Magn. Magn. Mater. 443: 36-44.

Ibrahim, S.M., Lorenzini, G., Kumar, P.V. & Raju, C.S.K. 2017. Influence of chemical reaction and heat source on dissipative MHD mixed convection flow of a Casson nanofluid over a nonlinear permeable stretching sheet. Int. J. Heat Mass Transfer 111: 346-355.

Ingham, D.B. 1986. Singular and non-unique solutions of the boundary-layer equations for the flow due to free convection near a continuously moving vertical plate. J. Appl. Math. Phys. (ZAMP) 37(4): 559-572.

Ishak, A., Nazar, R., Bachok, N. & Pop, I. 2010. MHD mixed convection flow adjacent to a vertical plate with prescribed surface temperature. Int. J. Heat Mass Transfer 53(21): 4506-4510.

Mabood, F., Ibrahim, S.M., Kumar, P.V. & Khan, W.A. 2017. Viscous dissipation effects on unsteady mixed convective stagnation point flow using Tiwari-Das nanofluid model. Results Phys. 7: 280-287.

Mamourian, M., Shirvan, K.M., Ellahi, R. & Rahimi, A.B. 2016. Optimization of mixed convection heat transfer with entropy generation in a wavy surface square lid-driven cavity by means of Taguchi approach. Int. J. Heat Mass Transfer 102: 544-554.

Mansur, S., Ishak, A. & Pop, I. 2015. The magnetohydrodynamic stagnation point flow of a nanofluid over a stretching/ shrinking sheet with suction. PLoS One 10(3): e0117733.

Merkin, J.H. 1986. On dual solutions occurring in mixed convection in a porous medium. J. Eng. Math. 20(2): 171-179.

Mohamed, M.K.A., Noar, N.A.Z.M., Salleh, M.Z. & Ishak, A. 2016. Free convection boundary layer flow on a horizontal circular cylinder in a nanofluid with viscous dissipation. Sains Malaysiana 45(2): 289-296.

Nazar, R., Noor, A., Jafar, K. & Pop, I. 2014. Stability analysis of three-dimensional flow and heat transfer over a permeable shrinking surface in a Cu-water nanofluid. International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering 8(5): 782-788.

Nazar, R. & Pop, I. 2004. Unsteady mixed convection near the forward stagnation point of a two-dimensional symmetric body prescribed with a constant wall heat flux. Sains Malaysiana 33(1): 15-17.

Noor, N.F.M., Haq, R.U., Nadeem, S. & Hashim, I. 2015. Mixed convection stagnation flow of a micropolar nanofluid along a vertically stretching surface with slip effects. Meccanica 50(8): 2007-2022.

Othman, N.A., Yacob, N.A., Bachok, N., Ishak, A. & Pop, I. 2017. Mixed convection boundary-layer stagnation point flow past a vertical stretching/shrinking surface in a nanofluid. Appl. Therm. Eng. 115: 1412-1417.

Oztop, H.F. & Abu-Nada, E. 2008. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 29(5): 1326-1336.

Rahman, M.M., Merkin, J.H. & Pop, I. 2015. Mixed convection boundary-layer flow past a vertical flat plate with a convective boundary condition. Acta Mech. 226(8): 2441-2460.

Ramachandran, N., Chen, T.S. & Armaly, B.F. 1988. Mixed convection in stagnation flows adjacent to vertical surfaces. J. Heat Transfer 110(2): 373-377.

Rashidi, S., Akar, S., Bovand, M. & Ellahi, R. 2017. Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still. Renew. Energy 115(C): 400-410.

Ridha, A. & Curie, M. 1996. Aiding flows non-unique similarity solutions of mixed-convection boundary-layer equations. J. Appl. Math. Phys. (ZAMP) 47(3): 341-352.

Roşca, A.V., Roşca, N.C. & Pop, I. 2014. Note on dual solutions for the mixed convection boundary layer flow close to the lower stagnation point of a horizontal circular cylinder: Case of constant surface heat flux. Sains Malaysiana 43(8): 1239-1247.

Roşca, N.C. & Pop, I. 2017. Axisymmetric rotational stagnation point flow impinging radially a permeable stretching/ shrinking surface in a nanofluid using Tiwari and Das model. Sci. Rep. 7: 1-11.

Saidur, R., Leong, K.Y. & Mohammad, H.A. 2011. A review on applications and challenges of nanofluids. Renew. Sust. Energy Rev. 15(3): 1646-1668.

Shampine, L.F., Kierzenka, J. & Reichelt, M.W. 2000. Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c. Tutorial Notes 2000: 1-27.

Shirvan, K.M., Mamourian, M. & Ellahi, R. 2017. Numerical investigation and optimization of mixed convection in ventilated square cavity filled with nanofluid of different inlet and outlet port. Int. J. Numer. Methods Heat Fluid Flow 27(9): 2053-2069.

Shirvan, K.M., Mamourian, M., Mirzakhanlari, S. & Ellahi, R. 2017. Numerical investigation of heat exchanger effectiveness in a double pipe heat exchanger filled with nanofluid: A sensitivity analysis by response surface methodology. Powder Technol. 313: 99-111.

Subhashini, S.V., Sumathi, R. & Momoniat, E. 2014. Dual solutions of a mixed convection flow near the stagnation point region over an exponentially stretching/shrinking sheet in nanofluids. Meccanica 49(10): 2467-2478.

Tiwari, R.K. & Das, M.K. 2007. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transfer 50(9): 2002- 2018.

Weidman, P.D., Kubitschek, D.G. & Davis, A.M.J. 2006. The effect of transpiration on self-similar boundary layer flow over moving surfaces. Int. J. Eng. Sci. 44(11): 730-737.

Zaimi, K., Ishak, A. & Pop, I. 2017. Unsteady flow of a nanofluid past a permeable shrinking cylinder using Buongiorno’s model. Sains Malaysiana 46(9): 1667-1674.

Zeeshan, A., Hassan, M., Ellahi, R. & Nawaz, M. 2017a. Shape effect of nanosize particles in unsteady mixed convection flow of nanofluid over disk with entropy generation. P.I. Mech. Eng. E-J. Pro. 231(4): 871-879.

Zeeshan, A., Shehzad, N. & Ellahi, R. 2017b. Analysis of activation energy in Couette-Poiseuille flow of nanofluid in the presence of chemical reaction and convective boundary conditions. Results Phys. 8: 502-512.

 

*Corresponding author; email: rmn@ukm.edu.my

 

 

 

 

 

 

 

 

previous