Sains Malaysiana 47(9)(2018): 2213–2221
http://dx.doi.org/10.17576/jsm-2018-4709-32
Ingham Problem for Mixed Convection Flow of a Nanofluid over a Moving Vertical Plate with Suction and Injection
Effects
(Masalah Ingham untuk Aliran Olakan
Campuran bagi
Nanobendalir terhadap Plat Telap Menegak yang Bergerak dengan Kesan Sedutan dan
Semburan)
ANUAR
JAMALUDIN1,
ROSLINDA
NAZAR2*
& IOAN POP3
1Department
of Mathematics, Universiti Pertahanan
Nasional Malaysia, 57000 Kuala Lumpur, Federal Territory,
Malaysia
2School
of Mathematical Sciences, Faculty of Science and Technology,
Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
3Department
of Mathematics, Babeş-Bolyai
University, R-400084 Cluj-Napoca, Romania
Received:
31 March 2018/Accepted: 22 May 2018
ABSTRACT
In this study, the effects
of suction and injection on the mixed convection flow of a
nanofluid, over a moving permeable vertical plate were discussed.
A similarity variable was used to transform the governing
equations to the ordinary differential equations, which were
then solved numerically using the bvp4c programme
from MATLAB.
Dual solutions (upper and lower branches) were found within
a certain range of the mixed convection parameter in assisting
and opposing flow regions. A stability analysis was implemented
to confirm that the upper branch solution was stable, while
the lower branch solution was unstable.
Keywords: Injection;
mixed convection; moving plate; nanofluid;
stability analysis; suction
ABSTRAK
Dalam kajian ini,
kesan sedutan dan
semburan pada
aliran olakan campuran
bagi nanobendalir
terhadap plat telap menegak yang bergerak dibincangkan. Pemboleh ubah keserupaan digunakan untuk menjelmakan persamaan menakluk kepada persamaan terbitan biasa dan seterusnya
diselesaikan secara
berangka menggunakan program bvp4c
daripada MATLAB. Penyelesaian dual
(cabang atas
dan cabang bawah)
didapati wujud
dalam julat tertentu
bagi parameter olakan
campuran di dalam kawasan aliran membantu dan aliran
menentang. Analisis kestabilan
dilakukan bagi
mengesahkan bahawa penyelesaian cabang atas adalah stabil,
manakala penyelesaian
cabang bawah adalah
tidak stabil.
Kata kunci: Analisis
kestabilan; nanobendalir;
olakan campuran; plat bergerak; sedutan; semburan
REFERENCES
Abbasbandy, S., Shivanian,
E., Vajravelu, K. & Kumar, S.
2017. A new approximate analytical technique for dual solutions
of nonlinear differential equations arising in mixed convection
heat transfer in a porous medium. Int. J. Numer.
Methods Heat Fluid Flow 27(2): 486-503.
Bachok, N., Najib, N., Arifin,
N.M. & Senu, N. 2016. Stability of dual solutions in boundary layer
flow and heat transfer on a moving plate in a copper-water
nanofluid with slip effect.
WSEAS Transactions on Fluid Mechanics 11: 151-158.
Bachok, N., Ishak, A., Nazar,
R. & Pop, I. 2011. Ingham problem
for free convection near a continuously moving vertical permeable
plate. IMA J. Appl. Math. 77(4): 578-589.
Md. Basir, M.F., Uddin, M.J. & Ismail,
A. 2017. Unsteady magnetoconvective
flow of bionanofluid with zero mass flux boundary condition. Sains Malaysiana 46(2):
327-333.
Buongiorno, J. 2006. Convective transport in nanofluids.
J. Heat Transfer 128(3): 240-250.
Devi, C.S., Takhar, H.S. & Nath, G. 1991. Unsteady
mixed convection flow in stagnation region adjacent to a vertical
surface. Wärme-und Stoffübertragung
26(2): 71-79.
Ellahi, R., Tariq, M.H., Hassan, M. & Vafai,
K. 2017. On boundary layer nano-ferroliquid flow under the influence of low oscillating
stretchable rotating disk. J. Mol. Liq. 229:
339-345.
Harris, S.D., Ingham, D.B. & Pop, I. 2009. Mixed convection boundary-layer flow near the
stagnation point on a vertical surface in a porous medium:
Brinkman model with slip. Transp. Porous Media 77(2):
267-285.
Hassan, M., Zeeshan, A., Majeed, A. & Ellahi, R. 2017. Particle shape effects on ferrofuids flow
and heat transfer under influence of low oscillating magnetic
field. J. Magn. Magn. Mater. 443: 36-44.
Ibrahim, S.M., Lorenzini, G., Kumar, P.V.
& Raju, C.S.K. 2017. Influence of chemical
reaction and heat source on dissipative MHD mixed convection
flow of a Casson nanofluid
over a nonlinear permeable stretching sheet. Int. J. Heat
Mass Transfer 111: 346-355.
Ingham, D.B. 1986. Singular and non-unique solutions of the boundary-layer
equations for the flow due to free convection near a continuously
moving vertical plate. J. Appl. Math. Phys. (ZAMP) 37(4):
559-572.
Ishak, A., Nazar, R., Bachok, N. & Pop,
I. 2010. MHD mixed convection flow adjacent to a vertical plate with prescribed
surface temperature. Int. J. Heat Mass Transfer 53(21):
4506-4510.
Mabood, F., Ibrahim, S.M., Kumar, P.V. & Khan, W.A. 2017. Viscous dissipation effects on unsteady mixed convective stagnation
point flow using Tiwari-Das nanofluid
model. Results Phys. 7: 280-287.
Mamourian,
M., Shirvan, K.M., Ellahi,
R. & Rahimi, A.B. 2016. Optimization of mixed convection heat transfer with entropy generation
in a wavy surface square lid-driven cavity by means of Taguchi
approach. Int. J. Heat Mass Transfer 102: 544-554.
Mansur,
S., Ishak, A. & Pop, I. 2015. The magnetohydrodynamic stagnation point
flow of a nanofluid over a stretching/
shrinking sheet with suction. PLoS
One 10(3): e0117733.
Merkin, J.H.
1986. On dual solutions occurring in mixed
convection in a porous medium. J. Eng. Math. 20(2):
171-179.
Mohamed,
M.K.A., Noar, N.A.Z.M., Salleh,
M.Z. & Ishak, A. 2016. Free
convection boundary layer flow on a horizontal circular cylinder
in a nanofluid with viscous dissipation. Sains
Malaysiana 45(2): 289-296.
Nazar,
R., Noor, A., Jafar, K. & Pop,
I. 2014. Stability analysis of three-dimensional flow and heat transfer over
a permeable shrinking surface in a Cu-water nanofluid.
International Journal of Mathematical, Computational, Physical,
Electrical and Computer Engineering 8(5): 782-788.
Nazar,
R. & Pop, I. 2004. Unsteady mixed convection near the forward
stagnation point of a two-dimensional symmetric body prescribed
with a constant wall heat flux. Sains
Malaysiana 33(1): 15-17.
Noor,
N.F.M., Haq, R.U., Nadeem, S. &
Hashim, I. 2015. Mixed convection stagnation flow of a micropolar
nanofluid along a vertically stretching
surface with slip effects. Meccanica
50(8): 2007-2022.
Othman,
N.A., Yacob, N.A., Bachok,
N., Ishak, A. & Pop, I. 2017. Mixed convection boundary-layer stagnation point flow past a vertical
stretching/shrinking surface in a nanofluid.
Appl. Therm. Eng. 115: 1412-1417.
Oztop,
H.F. & Abu-Nada, E. 2008. Numerical study of natural convection
in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 29(5): 1326-1336.
Rahman,
M.M., Merkin, J.H. & Pop, I.
2015. Mixed convection boundary-layer flow past a vertical flat plate with
a convective boundary condition. Acta
Mech. 226(8): 2441-2460.
Ramachandran,
N., Chen, T.S. & Armaly, B.F.
1988. Mixed
convection in stagnation flows adjacent to vertical surfaces.
J. Heat Transfer 110(2): 373-377.
Rashidi,
S., Akar, S., Bovand,
M. & Ellahi, R. 2017. Volume of fluid model to simulate the nanofluid
flow and entropy generation in a single slope solar still.
Renew. Energy 115(C): 400-410.
Ridha,
A. & Curie, M. 1996. Aiding flows
non-unique similarity solutions of mixed-convection boundary-layer
equations. J. Appl. Math. Phys. (ZAMP) 47(3): 341-352.
Roşca,
A.V., Roşca, N.C. & Pop,
I. 2014. Note
on dual solutions for the mixed convection boundary layer
flow close to the lower stagnation point of a horizontal circular
cylinder: Case of constant surface heat flux. Sains
Malaysiana 43(8): 1239-1247.
Roşca,
N.C. & Pop, I. 2017. Axisymmetric rotational stagnation point
flow impinging radially a permeable stretching/ shrinking
surface in a nanofluid using Tiwari and Das model. Sci.
Rep. 7: 1-11.
Saidur,
R., Leong, K.Y. & Mohammad, H.A. 2011. A review on applications and challenges of nanofluids.
Renew. Sust. Energy Rev. 15(3): 1646-1668.
Shampine,
L.F., Kierzenka, J. & Reichelt,
M.W. 2000. Solving boundary value problems
for ordinary differential equations in MATLAB with bvp4c.
Tutorial Notes 2000: 1-27.
Shirvan,
K.M., Mamourian, M. & Ellahi,
R. 2017. Numerical investigation and optimization of mixed
convection in ventilated square cavity filled with nanofluid
of different inlet and outlet port. Int. J. Numer.
Methods Heat Fluid Flow 27(9):
2053-2069.
Shirvan,
K.M., Mamourian, M., Mirzakhanlari,
S. & Ellahi, R. 2017. Numerical
investigation of heat exchanger effectiveness in a double
pipe heat exchanger filled with nanofluid:
A sensitivity analysis by response surface methodology. Powder
Technol. 313: 99-111.
Subhashini,
S.V., Sumathi, R. & Momoniat,
E. 2014. Dual solutions of a mixed convection flow near the
stagnation point region over an exponentially stretching/shrinking
sheet in nanofluids. Meccanica
49(10): 2467-2478.
Tiwari,
R.K. & Das, M.K. 2007. Heat transfer augmentation
in a two-sided lid-driven differentially heated square cavity
utilizing nanofluids. Int. J. Heat Mass Transfer 50(9):
2002- 2018.
Weidman,
P.D., Kubitschek, D.G. & Davis,
A.M.J. 2006. The effect of transpiration on self-similar boundary layer flow over
moving surfaces. Int. J. Eng. Sci. 44(11): 730-737.
Zaimi,
K., Ishak, A. & Pop, I. 2017. Unsteady flow of a nanofluid past a permeable
shrinking cylinder using Buongiorno’s
model. Sains Malaysiana
46(9): 1667-1674.
Zeeshan,
A., Hassan, M., Ellahi, R. &
Nawaz, M. 2017a. Shape
effect of nanosize particles in
unsteady mixed convection flow of nanofluid
over disk with entropy generation. P.I. Mech. Eng. E-J.
Pro. 231(4): 871-879.
Zeeshan,
A., Shehzad, N. & Ellahi,
R. 2017b. Analysis of activation energy in
Couette-Poiseuille flow of nanofluid
in the presence of chemical reaction and convective boundary
conditions. Results Phys. 8: 502-512.
*Corresponding author; email: rmn@ukm.edu.my