Sains Malaysiana 48(10)(2019): 2113–2123
http://dx.doi.org/10.17576/jsm-2019-4810-06
Calibration of Rock Cutting
Numerical Model based on Monitoring Data
(Penentukuran Model Berangka bagi
Pemotongan Batu berdasarkan Data Pemantauan)
VEDRAN PAVLIC1, MARIO BACIC2*
& MEHO SASA KOVACEVIC2
1Hidroinzenjering
d.o.o., Okucanska 30, 10 000 Zagreb, Croatia
2University of
Zagreb, Faculty of Civil Engineering, Kaciceva 26, 10 000 Zagreb, Croatia
Received: 10 April 2019/Accepted:
17 September 2019
ABSTRACT
Prediction
of the deformation increment and the final displacement of the rock cutting is
a challenging task. Many ambiguities linked with unpredictable nature or rock
mass make it difficult to apply the adequate contingency measures.
Implementation of common approach, which includes modelling of discontinuity
effects with estimated reduction of rock mass strength and modulus of
elasticity, usually does not yield satisfactory results. Therefore, a
calibration of FEM based numerical model was made by
conducting parametric analysis which feeds upon data obtained from extensive
on-site monitoring system. A step forward was made in description of numerical
parameters of karst discontinuities through consideration of monitoring
results, as well as excavation procedures, position, inclination and length of
discontinuities and PDC (project design change).
Keywords:
Discontinuities; karst; numerical modelling; observational method; rock mass
ABSTRAK
Ramalan
kenaikan canggaan dan sesaran akhir pemotongan batu adalah satu tugas yang
mencabar. Banyak kesamaran yang dikaitkan dengan sifat yang tidak dapat
diramalkan atau jisim batu menyukarkan untuk menggunakan langkah kontingensi
yang mencukupi. Pelaksanaan pendekatan biasa yang merangkumi pemodelan kesan
ketakselanjaran dengan anggaran pengurangan kekuatan jisim batu dan modulus
keanjalan, kebiasaannya
tidak memberikan keputusan yang memuaskan. Oleh itu, penentukuran model
berangka FEM dibuat dengan menjalankan analisis parametrik yang
menggunakan data yang diperoleh daripada sistem pemantauan ekstensif di tapak.
Satu penambahbaikan telah dibuat dalam penerangan parameter berangka
ketakselanjaran karst dengan mempertimbangkan keputusan pemantauan serta
prosedur pengorekan, kedudukan, kecenderungan dan panjang ketakselanjaran dan PDC (perubahan
reka bentuk projek).
Kata kunci: Jisim batu;
kaedah pemerapan; karst; ketakselanjaran; pemodelan berangka
REFERENCES
Arbanas,
Z. 2003. Construction of Zagrad foundation pit in Rijeka. Građevinar 55:
591-597.
Barton,
N.R. & Bandis, S. 1990. Review of predictive capabilities of JRC-JCS model
in engineering practice. Proc. Int. Symp. on Rock Joints, Rotterdam:
Balkema, pp. 603-610.
Bieniawski,
Z.T. 1989. Engineering Rock Mass Classifications. New York: Wiley.
Bjureland,
W., Spross, J., Johansson, F., Prästings, A. & Larsson, S. 2017.
Reliability aspects of rock tunnel design with the observational method.
International Journal of Rock Mechanics & Mining Sciences 98: 102-110.
https://doi. org/10.1016/j.ijrmms.2017.07.004.
Bonilla-Sierra,
V., Scholtes, L., Donze, F.V. & Elmouttie, M. 2015. Rock slope stability
analysis using photogrammetric data and DFN-DEM modelling. Acta Geotechnica 10(4):
497-511. https://doi.org/10.1007/s11440-015-0374-z.
Chen,
S., Goh, T.L., Han, L. & Tovele, G.S.V. 2019. Effects of tectonic stresses
and structural planes on slope deformation and stability at the Buzhaoba Open
Pit Mine, China. Sains Malaysiana 48(2): 317-324.
https://doi.org/10.17576/jsm- 2019-4802-07.
Frka,
R. 2014. Digital Photography: Zagrad B2, B6. Rijeka.
Goodman,
R.E. & Taylor, L.R. 1968. A model for the mechanics of jointed rock. Journal
of the Soil Mechanics and Foundations Division, Proceedings of ASCE 94(SM3):
636-659.
Hammah,
R.E., Yacoub, T.E., Corkum, B.C. & Curran, J.H. 2008. The practical
modelling of discontinuous rock masses whit finite element analysis. The
42nd U.S. Rock Mechanics Symposium (USRMS), 29 June-2 July, San Francisco,
California. American Rock Mechanics Association.
He,
Y., Peng, S., Du, W., Tang, X. & Zeng, H. 2017. Laboratory study of
acoustic velocity in different types of rocks at seismic frequency band. Sains
Malaysiana 46(11): 2187-2193. http:// dx.doi.org/10.17576/jsm-2017-4611-20.
Hoek,
E., Carranza-Torres, C.T. & Corkum, B. 2002. Hoek- Brown failure
criterion-2002 edition. In Proceedings of the Fifth North American Rock
Mechanics Symposium 1: 267-273.
Hoek,
E. & Diederichs, M.S. 2006. Empirical estimation of rock mass modulus. International
Journal of Rock Mechanics and Mining Sciences 43: 203-215.
https://doi.org/10.1016/j. ijrmms.2005.06.005.
Huang,
L., Xu, Z. & Zhou, C. 2009. Modeling and monitoring in a soft argillaceous
shale tunnel. Acta Geotechnica 4: 273-282.
https://doi.org/10.1007/s11440-009-0100-9.
Itasca.
2014. PFC Version 5.0 documentation.
Jing,
L. & Hudson, J.A. 2002. Numerical methods in rock mechanics. International
Journal of Rock Mechanics and Mining Sciences 39(4): 409-427.
https://doi.org/10.1016/ S1365-1609(02)00065-5.
Jurić
Kaćunić, D., Arapov, I. & Kovačević, M.S. 2011. New
approach to the determination of stiffness of carbonate rocks in Croatian
karst. Građevinar 63(2): 177-185.
Kujundzic,
B. & Grujic, N. 1966. Correlation between static and dynamic investigations
of rock mass “in situ”. Proc. of 1st ISRM Congress 1: 565-570.
Latha,
G.M. & Garaga, A. 2012. Elasto-plastic analysis of jointed rocks using
discrete continuum and equivalent continuum approaches. International
Journal of Rock Mechanics & Mining Sciences 53: 56-63.
https://doi.org/10.1016/j. ijrmms.2012.03.013.
Lin,
J.S. & Ku, C.Y. 2006. Two-scale modeling of jointed rockmasses. Int.
Jour. Rock Mech. Min. Sci. 43: 426-436.
https://doi.org/10.1016/j.ijrmms.2005.07.009.
Louie,
J.N. 2001. Faster, Better: Shear-wave velocity to 100 meters depth from refraction microtremor arrays. Bulletin of the Seismological
Society of America 91(2): 347-364.
Mohd
Razib, A.M., Goh, T.L.., Mazlan, N.A., Fahmi Abdul Ghani, M., Tuan Rusli, T.M.,
Ghani Rafek, A., Serasa, A.S., Chen, Y. & Zhang, M. 2018. A systematic approach
of rock slope stability assessment: A case study at Gunung Kandu, Gopeng,
Perak, Malaysia. Sains Malaysiana 47(7): 1413- 1421.
http://dx.doi.org/10.17576/jsm-2018-4707-08.
Marinos,
P. & Hoek, E. 2000. GSI - a geologically friendly tool for rock mass strength
estimation. Proc. GeoEng2000.
Mas,
I.D., Potyondy, D.O., Pierce, M. & Cundall, P.A. 2008. The smooth-joint
contact model. 8th. World Congress on Computational Mechanics (WCCM8), 5th.
European Congress on Computational Methods in Applied Sciences and Engineering
(ECCOMAS 2008).
Pavlic, V. 2014. Residential-Business
Complex with Underground Garage “Zagrad B”. Rijeka Projekt. Implementation
geotechnical design: Construction pit protection design (stress-deformation
analysis), 3300-666-2010/2, Institute IGH JSC.
Pollak, D. 2007. Influence of
carbonate rock masses on their engineering-geological properties. Ph.D. thesis,
Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb,
Zagreb (Unpublished).
Potyondy, D.O. & Cundall, P.A.
2004. A bonded-particle model for rock. International Journal of Rock
Mechanics and Mining Sciences 41: 1329-1364. https://doi.org/10.1016/j.
ijrmms.2004.09.011.
Rocscience Inc. 2010. Phase2
V7.0 - A Two-Dimensional Finite Element Analysis Program.
Savi, R. 2014. Residential-Business
Complex with Underground Garage “Zagrad B”. Rijeka Projekt. Measurement and
testing report, 2130-T-001/14, Institute IGH JSC.
Shen, C.K., Sadigh, K. &
Herrmann, L.R. 1978. An analysis of NGI simple shear apparatus for cyclic soil
testing. Dynamic Geotechnical Testing, ASTM STP 654. pp. 148-162.
Sturzeneger, M., Stead, D. &
Pavicic, K. 2009. Close-range terrestrial digital photogrammetry and
terrestrial laser scanning for discontinuity characterization on rock cuts. Engineering
Geology 106(3-4): 163-182. https://doi. org/10.1016/j.enggeo.2009.03.004.
Tang, S.B., Huang, R.Q., Tang,
C.A., Liang, Z.Z. & Heap, M.J. 2017. The failure processes analysis of rock
slope using numerical modelling techniques. Engineering Failure Analysis 79:
999-1016. https://doi.org/10.1016/j. engfailanal.2017.06.029.
Tomac, V. 2012. Residential-Business
Complex with Underground Garage “Zagrad B”. Rijeka Projekt. Graund anchor
assessment tests report, BBR Adria Ltd.
Vuic, V.G., Opacak, G. &
Pavicic, K. 2014. Residential-business complex with underground garage “Zagrad
B”. Rijeka Projekt. Engineering Geological Mapping Report, 4300-3/14,
Institute IGH JSC.
*Corresponding author; email:
mbacic@grad.hr
|