Sains Malaysiana 48(10)(2019): 2125–2133

http://dx.doi.org/10.17576/jsm-2019-4810-07

 

Optimization of CTAB-based RNA Extraction for in planta Fusarium oxysporumf. sp. cubense Gene Expression Study

(Pengoptimuman Pengekstrakan RNA berasaskan CTAB untuk Kajian Pengekspresan Gen Fusarium oxysporum f. sp. cubense secara in planta)

 

NEE KIEW POON1, ROFINA YASMIN OTHMAN1,2, KATHARINA MEBUS2 & CHEE HOW TEO2*

 

1Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

 

2Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 13 November 2018/Accepted: 20 September 2019

 

ABSTRACT

A crucial prerequisite for an insightful gene expression study is the quality of the nucleic acid extracted. High-quality nucleic acids allow comparative downstream analyses for both organisms during a phytopathogen infection. However, RNA extraction of pathogen-infected host materials usually involves extraction methods that are optimised individually for either the pathogen or the host. Different sets of buffers or specialised commercial kits are often required. In this study, a streamlined CTAB-based extraction protocol was optimised for both the pure culture of Fusarium oxysporum f. sp. cubense (Foc) and infected banana roots. Foc cultures were grown on PDA overlaid by a nylon membrane and total nucleic acids were successfully extracted from mycelia with a ratio of 100 mg mycelia powder mass to 2 mL of CTAB buffer. Using the optimised protocol, LiCl-precipitated RNAs showed higher values of A260/280 (2.064 ± 0.021) and A260/230 (1.937 ± 0.076) compared to ethanol precipitated RNAs. Similar observation was observed for inoculated banana roots where LiCl-precipitated RNAs showed higher values of A260/280 and A260/230 compared to ethanol precipitated RNAs. qRT-PCR analysis using a pair of Foc specific primers, FoTEF1α, confirmed that the LiCl-precipitated RNA was more suitable for downstream gene expression studies. This extraction protocol is applicable for Foc in planta gene expression study with a high potential to be extended to other filamentous fungal pathogens.

Keywords: Fusarium oxysporum f. sp. cubense; hexadecyltrimethylammonium bromide (CTAB); in planta gene expression

 

ABSTRAK

Prasyarat penting untuk kajian pengekspresan gen yang tepat adalah kualiti asid nukleik yang diekstrak. Asid nukleik berkualiti tinggi membolehkan analisis hiliran komparatif bagi kedua-dua organisma semasa jangkitan fitopatogen. Walau bagaimanapun, pengambilan RNA perumah yang dijangkiti patogen biasanya melibatkan kaedah pengekstrakan yang dioptimumkan secara individu untuk sama ada patogen atau perumah. Pelbagai penimbal atau kit komersial khusus sering diperlukan. Dalam kajian ini, protokol pengekstrakan berasaskan CTAB dioptimumkan untuk kedua-dua kultur tulenFusarium oxysporum f. sp. cubense (Foc) dan akar pisang yang dijangkiti. Foc dikultur pada PDA yang dilapisi oleh membran nilon dan asid nukleik berjaya diekstrak daripada miselium dengan nisbah 100 mg serbuk miselium kepada 2 mL penimbal CTAB. Dengan protokol yang dioptimumkan, RNA yang dimendak oleh LiCl menunjukkan nilai A260/280 (2.064 ± 0.021) dan A260/230 (1.937 ± 0.076) yang lebih tinggi berbanding RNA yang dimendak menggunakan etanol. Pemerhatian yang sama dicerap untuk akar pisang yang diinokulasi dengan RNA yang dimendak oleh LiCl menunjukkan nilai A260/280 dan A260/230 yang lebih tinggi berbanding RNA yang dimendak menggunakan etanol. Analisis qRT-PCR menggunakan pasangan pencetus khususFoc, FoTEF1α, mengesahkan bahawa RNA yang dimendak oleh LiCl lebih sesuai untuk kajian pengekspresan gen hiliran. Protokol pengekstrakan ini boleh digunakan untuk kajian pengekspresan gen Foc secara in planta dan berpotensi tinggi untuk diperluaskan kepada patogen kulat filamen lain.

Kata kunci: Fusarium oxysporum f. sp. cubense; heksadesiltrimetil ammonium bromida (CTAB); pengekspresan gen in planta

REFERENCES

Abu Almakarem, A.S., Heilman, K.L., Conger, H.L., Shtarkman, Y.M. & Rogers, S.O. 2012. Extraction of DNA from plant and fungus tissues in situ. BMC Research Notes 5: 266- 277. doi:10.1186/1756-0500-5-266.

Anderson, J.P., Hane, J.K., Stoll, T., Pain, N., Hastie, M.L., Kaur, P., Hoogland, C., Gorman, J.J. & Singh, K.B. 2016. Proteomic analysis of Rhizoctonia solaniidentifies infection-specific, redox associated proteins and insight into adaptation to different plant hosts. Molecular and Cellular Proteomics 15(4): 1188-1203. doi: 10.1074/mcp.M115.054502.

Barlow, J.J., Mathias, A.P., Williamson, R. & Gammack, D.B. 1963. A simple method for the quantitative isolation of undegraded high molecular weight ribonucleic acid. Biochemical & Biophysical Research Communications 13(1): 61-66. doi: 10.1016/0006-291X(63)90163-3.

Bernáldez, V., Rodríguez, A., Rodríguez, M., Sánchez-Montero, L. & Córdoba, J.J. 2017. Evaluation of different RNA extraction methods of filamentous fungi in various food matrices. LWT-Food Science Technology 78: 47-53. doi: 10.1016/j.lwt.2016.12.018.

Brandfass, C. & Karlovsky, P. 2008. Upscaled CTAB-based DNA extraction and real-time PCR assays for Fusarium culmorumand F. graminearum DNA in plant material with reduced sampling error. International Journal of Molecular Sciences 9(11): 2306-2321. doi: 10.3390/ijms9112306.

Bryant, J.A. 1996. DNA extraction. In Methods in Plant Biochemistry Molecular Biology, Vol. 10, edited by Bryant, J.A. Amsterdam: Elsevier. pp. 1-12.

Chomczynski, P. & Sacchi, N. 2006. The single-step method of RNA isolation by acid guanidinium thiocyanatephenol-chloroform extraction: Twenty-something years on. Nature Protocols 1(2): 581-585. doi: 10.1038/nprot.2006.83.

Clarke, J.D. 2009. Cetyltrimethyl Ammonium Bromide (CTAB) DNA miniprep for plant DNA isolation. Cold Spring Harbour Protocols 2009(3): pdb.prot5177. doi: 10.1101/pdb.prot5177.

Cox, R.A. 1968. The use of guanidine chloride in the isolation of nucleic acids. Methods in Enzymology 12: 120-129. doi: 10.1016/0076-6879(67)12123-X.

De Cal, A., Pascual, S. & Melgarejo, P. 1997 Infectivity of chlamydospores vs microconidia of Fusarium oxysporumf. sp. lycopersici on tomato. Journal of Phytopathology 145(5-6): 231-233. doi: 10.1111/j.1439-0434.1997.tb00391.x.

Doyle, J.J. & Doyle, J.L. 1987. Genomic plant DNA preparation from fresh tissue-CTAB method. Phytochemical Bulletin 19: 11-15.

Fang, G., Hammar, S. & Grumet, R. 1992. A quick and inexpensive method for removing polysaccharides from plant genomic DNA. Biotechniques 13(1): 52-55.

Gambino, G., Perrone, I. & Gribaudo, I. 2008. A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochemical Analysis 19(6): 520-525. doi: 10.1002/pca.1078.

Gontia-Mishra, I., Tripathi, N. & Tiwari, S. 2014. A simple and rapid DNA extraction protocol for filamentous fungi efficient for molecular studies. Indian Journal of Biotechnology 13: 536-539.

González-Mendoza, D., Argumedo-Delira, R., Morales-Trejo, A., Pulido-Herrera, Cervantes-Díaz, L., Grimaldo-Juarez, O. & Alarcón, A. 2010. A rapid method for isolation of total DNA from pathogenic filamentous plant fungi. Genetics and Molecular Research 9(1): 162-166. doi: 10.4238/vol9- 1gmr680.

Islas-Flores, I., Peraza-Echevarria, L., Canto-Canche, B. & Rodriguez-Garcia, C.M. 2006. Extraction of high-quality, melanin-free RNA from Mycosphaerella fijiensis for cDNA preparation. Molecular Biotechnology 34(1): 45-50. doi: 10.1385/MB:34:1:45.

Johari, S. & Majumder, S. 2015. An Efficient DNA extraction protocol for successful PCR detection of banana bunchy top virus from banana leaves. Asian Journal of Biotechnology 7(2): 80-87. doi: 10.3923/ajbkr.2015.80.87.

Khan, S., Qureshi, M.I., Kamaluddin, M., Alam, T. & Abdin, M.Z. 2007. Protocol for isolation of genomic DNA from dry and fresh roots of medicinal plants suitable for RAPD and restriction digestion. African Journal of Biotechnology 6(3): 175-178.

Leite, G.M., Magan, N. & Medina, Á. 2012. Comparison of different bead-beating RNA extraction strategies: An optimized method for filamentous fungi. Journal of Microbiological Methods 88: 413-418. doi: 10.1016/j. mimet.2012.01.011.

Lim, N.Y.N., Roco, C.A. & Frostegård, A. 2016. Transparent DNA/RNA co-extraction workflow protocol suitable for inhibitor-rich environmental samples that focuses on complete DNA removal for transcriptomic analyses. Frontiers in Microbiology 7: 1588. doi: 10.3389/fmicb.2016.01588.

Martínez-Fuentes, A., Mesejo, C., Agustí, M. & Reig, C. 2015. Toward a more efficient isolation of total RNA from loquat (Eriobotrya japonica Lindl.) tissues. Fruits 70(1): 47-51. doi: 10.1051/fruits/2014042.

Mbéguié-A-Mbéguié, D., Fils-Lycaon, B., Chillet, M., Hubert, O., Galas, C. & Gomez, R. 2008. Extraction and purification of total RNA from banana tissues (small scale). Fruits 63(4): 255-261. doi: 10.1051/fruits:2008020.

Mohamed, A.A., Mak, C., Liew, K.W. & Ho, Y.W. 1999. Early evaluation of banana plants at nursery stage for Fusarium wilt tolerance. In Seminar on Banana Fusarium Wilt Management Towards Sustainable Cultivation, edited by Molina, A.B., Nik Masdek, N.H. & Liew, K.W. Pahang, Malaysia: Genting Highlands Resort. pp. 174-185.

Rubio-Piña, J.A. & Zapata-Pérez, O. 2011. Isolation of total RNA from tissues rich in polyphenols and polysaccharides of mangrove plants. Electronic Journal of Biotechnology 14(5): 10. doi: 10.2225/vol14-issue5-fulltext-10.

Sambrook, J. & Russel, D.W. 2001. Plasmids and their usefulness in molecular cloning. In Molecular Cloning: A Laboratory Manual, 3rd ed. Vol 1., edited by Sambrook, J. & Russel, D.W. New York: Cold Spring Harbor. pp. 82-83.

Schumann, U., Smith, N.A. & Wang, M-B. 2013. A fast and efficient method for preparation of high-quality RNA from fungal mycelia. BMC Research Notes 6(1): 71. doi: 10.1186/1756-0500-6-71.

Shackelford, R.E. 2018. Ethanol Precipitation/Salting Out. PathologyOutlines.com, Inc. http://www.pathologyoutlines. com/topic/moleculardnapurethanolprecip.html. Accessed on 18 June 2018.

Sharma, K., Bhattacharjee, R., Sartie, A. & Kumar, P.L. 2013. An improved method of DNA extraction from plants for pathogen detection and genotyping by polymerase chain reaction. African Journal of Biotechnology 12(15): 1894-1901. doi: 10.5897/AJB12.2096.

Sάnchez-Rodrίguez, A., Portal, O., Rojas, L.E., Ocaña, B., Mendoza, M., Acosta, M., Jiménez, E. & Höfte, M. 2008. An efficient method for the extraction of high-quality fungal total RNA to study the Mycosphaerella fijiensis- Musa spp. interaction. Molecular Biotechnology 40(3): 299-305. doi: 10.1007/s12033-008-9092-1.

Tan, S.C. & Yiap, B.C. 2009. DNA, RNA, and protein extraction: The past and the present. Journal of Biomedicine and Biotechnology 2009: 574398. doi: 10.1155/2009/574398.

Williams, S.A., Slatko, B.E. & McCarrey, J.R. 2007. Laboratory Investigations in Molecular Biology. Massachusetts: Jones and Bartlett.

Yaffe, H., Buxdorf, K., Shapira, I., Ein-Gedi, S., Zvi, M.M-B., Fridman, E., Moshelion, M. & Levy, M. 2012. LogSpin: A simple, economical and fast method for RNA isolation from infected or healthy plants and other eukaryotic tissues. BMC Research Notes 5: 45. doi: 10.1186/1756-0500-5-45.

Yang, Y., Zuzak, K. & Feng, J. 2016 An improved simple method for DNA extraction from fungal mycelia. Canadian Journal of Plant Pathology 38(4): 476-482. doi: 10.1080/07060661.2016.1243585.

 

*Corresponding author; email: cheehow.teo@um.edu.my

 

 

 

previous