Sains Malaysiana 48(10)(2019): 2257–2264
http://dx.doi.org/10.17576/jsm-2019-4810-22
Inspirasi Antena Metabahan yang Boleh Dikonfigurasi untuk Komunikasi
5G
(Metamaterial Antenna Inspiration That Can
Be Configured for 5G Communication)
MOHAMMAD RASHED
IQBAL
FARUQUE1,
MD.
MEHEDI
HASAN1,
MUHAMAD
ROSZAINI
ROSLAN1*,
MOHAMMAD
TARIQUL
ISLAM2
& SHARIFAH MASTURA SYED
ABDULLAH1
1Space Science Centre
(ANGKASA), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
2Centre of Advanced
Electronics and Communication Engineering, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 14 February 2019/Accepted:
9 August 2019
ABSTRAK
Perkembangan
lalu lintas dalam sistem komunikasi tanpa wayar telah menarik banyak
pihak menumpukan perhatian kepada spektrum jalur lebar luas dalam
gelombang frekuensi millimeter yang merupakan keperluan komunikasi
generasi kelima (5G). Inspirasi antena yang boleh dikonfigurasi
frekuensinya berasaskan metabahan dicadangkan untuk komunikasi 5G.
Ia terdiri daripada garisan suapan lurus ekakutub dengan dua resonator
cincin yang berpecah dua (DSRR). DSRR dibangunkan
oleh resonator cincin berpecah luar dan dalam dengan jalur logam
tembaga E-bentuk terbalik yang dihubungkan dengan resonator cincin
luar. Teknik Integrasi Terhad berasaskan simulator elektromagnet
CST
Microwave Studio digunakan untuk reka bentuk dan kajian berangka.
Pulangan Kerugian (S11) menunjukkan resonan dalam
32.08 GHz, 35.07 GHz, dan 41.60 GHz. Prestasi antena yang boleh
dikonfigurasi dicadangkan dianalisis dengan mengaktifkan atau menyahaktifkan
DSRR.
Walau bagaimanapun, metabahan yang direka menunjukkan ciri-ciri
lengan kiri, padatan dalam ukuran dan lebih bersesuaian untuk aplikasi
gelombang tanpa wayar 5G.
Kata
kunci: Aplikasi 5G; konfigurasi antena; metabahan lengan kiri
ABSTRACT
Traffic
development in the wireless communication system has attracted many
parties concentrating on a broad bandwidth spectrum in the wave
of frequency millimeters which is a fifth generation communication
requirement (5G). Inspired antennae that can be configured by its
own metamaterial is suggested for 5G communication. It consists
of a straight feed line monopole with two resonator rings that split
to two (DSRR). DSRR was
developed by resonator the external split ring and in with the brass
metal stripe of an overturned E-form linked to the resonator of
the outer ring. Limited Integration techniques based on electromagnet
CST Microwave
Studio is used for numerical design and investigation. The Return
of Loss (S11)
showed a resonant in 32.08 GHz, 35.07 GHz and 41.60 GHz. The antenna
performance that can be configured is analyzed by activating or
deactivating DSRR.
However, metamaterial designed shows the characteristics of the
left arm, a measure in measurements and is more appropriate for
the 5G wireless wave application.
Keywords: Antenna configuration;
left handed metamaterial; 5G applications
REFERENCES
Cao, Z., Ma, Q., Smolders, A.B., Jiao, Y., Wale, M.J., Oh, C.W.,
Wu, H. & Koonen, A.M.J. 2016. Advanced integration techniques
on broadband millimeter-wave beam steering for 5G wireless networks
and beyond. IEEE Journal of Quantum Electronics 52(1): 0600620.
Dadgarpour, A., Sorkherizi, M.S., Kishk, A.A. & Denidni, T.A.
2016. Single-element antenna loaded with artificial Mu-near-zero
structure for 60 GHz MIMO applications. IEEE Transactions on
Antennas and Propagation 64(12): 5012-5019.
Ge, L., Yang, X., Zhang, D., Li, M. & Wong, H. 2016. Polarization
reconfigurable magneto-electric dipole antenna for 5G WiFi. IEEE
Antennas and Wireless Propagation Letters 16: 1504-1507.
Hao, Z.C., Fan, K. & Wang, H. 2017. A planar polarization-reconfigurable
antenna. IEEE Transactions on Antennas and Propagation 65(4):
1624-1632.
Hasan, M.M., Faruque, M.R.I. & Islam, M.T. 2017. Inverse E-shape
chiral metamaterial for long distance telecommunication. Microwave
and Optical Technology Letters 59: 1772-1776.
Hasan, M.M., Faruque, M.R.I., Islam, S.S. & Islam, M.T. 2016.
A new compact double-negative miniaturized metamaterial for wideband
operation. Materials 9(10): 830.
Li, M. & Luk, K.M. 2015. Wideband magneto-electric dipole antenna
for 60-GHz millimetre-wave communications. IEEE Transactions
on Antennas and Propagation 63(7): 3276-3279.
Liu, H., Wang, B.Z. & Shao, W. 2007. Dual band bi-directional
pattern reconfigurable fractal patch antenna for millimetre wave
application. Journal of Infrared, Millimeter and Terahertz Waves
28: 25-31.
Mirzaei, H. & Eleftheriades, G.V. 2011. A compact frequency-reconfigurable
metamaterial inspired antenna. IEEE Transactions on Antennas
and Propagation 10: 1154-1157.
Roh, W., Seol, J.Y., Park, J., Lee, B., Lee, J., Kim, Y., Cho, J.,
Cheun, K. & Aryanfar, F. 2014. Millimeter-wave beamforming as
an enabling technology for 5G cellular communications: Theoretical
feasibility and prototype results. IEEE Communications Magazine
52(2): 106-113.
Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C. &
Schultz, S. 2000. Composite medium with simultaneously negative
permeability and permittivity. Physical Review Letters 84:
4184-4187.
Veselago, V.G. 1968. The electrodynamics
of substances with simultaneously negative values of ε and
μ. Soviet Physics Uspekhi. 10: 509-514.
Yan, S. & Vandenbosch, G.A.E.
2016. Radiation pattern reconfigurable wearable antenna based on
metamaterial structure. IEEE Transactions on Antennas and Propagation
15: 1715-1718.
Zhang, H.B., Ban, Y.L., Qiang, Y.F.,
Guo, J. & Yu, Z.F. 2017. Reconfigurable loop antenna with two
parasitic grounded strips for WWAN/LTE unbro-ken-metal-rimmed smartphones.
IEEE Access 5: 4853-4858.
*Corresponding author; email: mrr@ukm.edu.my
|