| Sains Malaysiana 48(12)(2019): 2787–2796 http://dx.doi.org/10.17576/jsm-2019-4812-20 
                 A Distance Measure of Interval-valued 
              Belief Structures (Suatu Jarak Pengukuran Nilai Selang Struktur 
              Kepercayaan)   JUNQIN CAO1,2, 
              XUEYING 
              ZHANG2* 
              & JIAPENG FENG3   1College of Information 
              and Computer, Taiyuan University of Technology, Taiyuan, 030024, 
              China    2School of Electronic 
              Information Engineering, Taiyuan University of Science and Technology, 
              Taiyuan, 030024, China    3Tai Yuan Institute 
              of China Coal Technology and Engineering Group, Taiyuan, 030024, 
              China   Received: 21 February 2019/Accepted: 
              23 December 2019   ABSTRACT Interval-valued belief structures 
              are generalized from belief function theory, in terms of basic belief 
              assignments from crisp to interval numbers. The distance measure 
              has long been an essential tool in belief function theory, such 
              as conflict evidence combinations, clustering analysis, belief function 
              and approximation. Researchers have paid much attention and proposed 
              many kinds of distance measures. However, few works have addressed 
              distance measures of interval-valued belief structures up. In this 
              paper, we propose a method to measure the distance of interval belief 
              functions. The method is based on an interval-valued one-dimensional 
              Hausdorff distance and Jaccard 
              similarity coefficient. We show and prove its properties of non-negativity, 
              non-degeneracy, symmetry and triangle inequality. Numerical examples 
              illustrate the validity of the proposed distance.   Keywords: Distance; Hausdorff distance; interval-valued belief structures; Jaccard similarity coefficient   ABSTRAK Nilai selang struktur kepercayaan digeneralisasi daripada teori fungsi kepercayaan, dari sudut tugasan 
              kepercayaan asas 
              nombor krisp kepada 
              selang. Jarak pengukuran 
              telah menjadi alat 
              yang penting dalam 
              teori fungsi kepercayaan, 
              seperti gabungan 
              bukti konflik, analisis berkelompok, fungsi kepercayaan dan penganggaran. Penyelidik telah memberi banyak perhatian dan mencadangkan 
              pelbagai jenis 
              jarak pengukuran. Walau bagaimanapun, beberapa kajian telah membincangkan jarak pengukuran nilai selang struktur 
              kepercayaan. Dalam 
              kertas ini, kami mencadangkan kaedah untuk mengukur jarak fungsi selang 
              kepercayaan. Kaedah 
              ini berdasarkan jarak nilai selang 
              satu dimensi 
              Hausdorff dan pekali 
              kesamaan Jaccard. 
              Kami tunjuk dan buktikan 
              sifatnya yang tidak 
              negatif, tidak merosot, simetri dan ketidaksamaan segitiga. Contoh berangka menunjukkan kesahan jarak yang dicadangkan.   Kata kunci: Jarak; 
              jarak Hausdorff; 
              nilai selang struktur 
              kepercayaan; pekali 
              kesamaan Jaccard REFERENCES 
               Bauer, M. 1997. Approximation 
              algorithms and decision making in the Dempster-Shafer 
              theory of evidence - An empirical study. International Journal 
              of Approximate Reasoning 17: 217-237.  Bouchard, M., Jousselme, A.L. & Doré, P.E. 
              2013. A proof for the positive definiteness of the Jaccard 
              index matrix. International Journal of Approximate Reasoning 
              54: 615-626.  Carrillo Pedroza, F.R., Soria Aguilar, M.D.J., Sanchez Castillo, M.A., 
              Martinez Luevanos, A. & Picazo 
              Rodriguez, N.G. 2017. Adsorption of chromium from steel plating 
              wastewater using blast furnace dust. Revista 
              Internacional De Contaminacion Ambiental. 33: 591-603.  Cuzzolin, F. 2011. Lp consonant approximation of belief functions in the mass 
              space. International Symposium on Imprecise Probability Theories 
              and Applications Innsbruck Austria 22: 420-436.  Cuzzolin, F. 2008. A geometric 
              approach to the theory of evidence. IEEE Transactions on Systems 
              Man and Cybernetics Part C - Applications and Reviews 38: 522-534. 
               de Carvalho, F.D.T. & Pimentel, J.T. 2012. Partitioning fuzzy 
              clustering algorithms for interval-valued data based on Hausdorff distances. IEEE International Conference On Systems, 
              Man, and Cybernetics (SMC), Seoul, South Korea. pp. 1379-1384. 
               Dempster, A.P. 1967. Upper 
              and lower probabilities induced by a multi-valued mapping. Annals 
              of Mathematical Statistics 38: 325-339.  Deng, Y., Shi, W.K., 
              Zhu, Z.F. & Liu, Q. 2004. Combining belief functions based on 
              distance of evidence. Decision Support Systems 38: 489-493. 
               Denoeux, T. 1999. Reasoning 
              with imprecise belief structures. International Journal of Approximate 
              Reasoning 20: 79-111.  Denoeux, T. 2000. A neural 
              network classifier based on Dempster- 
              Shafer theory. IEEE Transactions on Systems Man and Cybernetics 
              - Part A Systems and Humans 30: 131-150.  Diaz, J., Rifqi, M. & Bouchon-Meunier, 
              B. 2006. A similarity measure between basic belief assignments. 
              Information Fusion: 9th International Conference. pp. 1-6. 
               Fallatah, M.M., Kavil, Y.N., Ibrahim, A.S.A., Orif, 
              M.I., Shaban, Y.A. & Farawati, 
              R.A. 2018. Hydrographic parameters and distribution of dissolved 
              Cu, Ni, Zn and nutrients near Jeddah desalination plant. Open 
              Chemistry 16: 246-257.  Fu, C. & Yang, 
              S.L. 2012. The conjunctive combination of interval-valued belief 
              structures from dependent sources. International Journal of Approximate 
              Reasoning 53: 769-785.  Fu, C. & Yang, 
              S.L. 2011. Analyzing the applicability of Dempster’s 
              rule to the combination of interval-valued belief structures. Expert 
              Systems with Applications 38: 4291-4301.  Giang, P.H. 2015. Decision 
              making under uncertainty comprising complete ignorance and probability. 
              International Journal of Approximate Reasoning 62: 27-45. 
               Gower, J.C. 1971. 
              A general coefficient of similarity and some of its properties. 
              Biometrics 27: 857-871.  Han, D., Dezert, J. & Yang, Y. 2014. New distance measures of evidence 
              based on belief intervals. In Belief Functions: Theory and Application. 
              BELIEF 2014. Lecture Notes in Computer Science, edited by Cuzzolin, F. Switzerland: Springer. 8764: 432-441.  Han, D., Dezert, J., Han, C. & Yang, Y. 2011. New dissimilarity 
              measures in evidence theory. Information Fusion (FUSION), Proceedings 
              of the 14th International Conference. pp. 1-7.  Hariz, S.B., Elouedi, Z. & Mellouli, K. 2006. 
              Clustering approach using belief function theory. Lecture Notes 
              in Computer Science 4183: 162-171.  Huh, E., Lim, S., 
              Kim, H.G., Ha, S.K., Park, H., Huh, Y. & Oh, M.S. 2018. Ginger 
              fermented with schizosaccharomyces pombe 
              alleviates memory impairment via protecting hippocampal neuronal 
              cells in amyloid beta(1-42) plaque injected 
              mice. Food and Function 9: 171-178.  Jaccard, P. 1901. Distribution 
              de la Flore Alpine dans le Bassin des Dranses et dans quelques régions 
              voisines. Bulletin De La Societe 
              Vaudoise Des 
              Sciences Naturelles 37: 241-272.  Jiang, W. & Wang, 
              S. 2017. An uncertainty measure for interval-valued evidences. Int. 
              J. Comput. Commun. 
              Control 12: 631-644.  Jousselme, A.L. & Maupin, 
              P. 2012. Distances in evidence theory: Comprehensive survey and 
              generalizations. International Journal of Approximate Reasoning 
              53: 118-145.  Jousselme, A.L., Grenier, D. & Bossé, É. 2001. 
              A new distance between two bodies of evidence. Information Fusion 
              2: 91-101.  Kaushik, N. & 
              Chatterjee, N. 2018. Automatic relationship extraction from agricultural 
              text for ontology construction. Information Processing in Agriculture 
              5: 60-73.  Klein, J., Destercke, S. & Colot, O. 2016. 
              Interpreting evidential distances by connecting them to partial 
              orders: Application to belief function approximation. International 
              Journal of Approximate Reasoning 71: 15-33.  Lee, E.S. & Zhu, 
              Q. 1992. An interval dempster-shafer approach. 
              Computers and Mathematics with Applications 24: 89-95.  Li, Z., Han, C. & 
              Gu, T. 2018. Economics of biomass gasification: 
              A review of the current status. Energy Sources Part B Economics 
              Planning and Policy 13: 137-140.  Liu, Z., Pan, Q. 
              & Dezert, J. 2014. A belief classification 
              rule for imprecise data. Applied Intelligence 40: 214-228. 
               Liu, W.R. 2006. Analyzing 
              the degree of conflict among belief functions. Artificial Intelligence 
              170: 909-924.  Loudahi, M., Klein, J., 
              Vannobel, J.M. & Colot, O. 2016. 
              Evidential matrix metrics as distances between meta-data dependent 
              bodies of evidence. IEEE Transactions on Cybernetics 46: 
              109-122.  Martin, A., Jousselme, A.L. & Osswald, C. 
              2008. Conflict measure for the discounting operation on belief functions. 
              International Conference on Information Fusion pp. 1-8.  Mo, H.M., Lu, X. 
              & Deng, Y. 2016. A generalized evidence distance. Journal 
              of Systems Engineering and Electronics 27: 470-476.  Oyekale, A.S. 2017. Cocoa farmers’ safety 
              perception and compliance with precautions in the use of pesticides 
              in centre and western cameroon. Applied 
              Ecology and Environmental Research 15: 205-219. Sevastianov, 
              P., Dymova, L. & Bartosiewicz, 
              P. 2012. A framework for rule-base evidential reasoning in the interval 
              setting applied to diagnosing Type 2 diabetes. Expert Systems 
              with Applications 39: 4190-4200.  Sevastjanov, P., Bartosiewicz, P. & Tkacz, K. 
              2010. The normalization of the Dempster’s 
              Rule of combination. Artificial Intelligence and Soft Computing, 
              Pt II 6114: 659- 666.  Shafer, G. 1976. 
              A Mathematical Theory of Evidence. Princeton: Princeton University 
              Press.  Sigren, J.M., Figlus, J., Highfield, W., Feagin, R.A. & Armitage, A.R. 2018. The effects of coastal 
              dune volume and vegetation on storm-induced property damage: Analysis 
              from hurricane ike. Journal of Coastal 
              Research 34: 164-173.  Skibicki, D., Pejkowski, L. & Stopel, M. 2017. 
              Finite element analysis of ventilation system fire damper dynamic 
              time-history. Polish Maritime Research 24: 116-123.  Smets, P. & Kennes, R. 1994. The transferable belief model. Artificial 
              Intelligence 66: 191-234.  Song, Y., Wang, X., 
              Lei, L. & Yue, S. 2016. Uncertainty measure for interval-valued 
              belief structures. Measurement 80: 241- 250.  Song, Y., Wang, X., 
              Lei, L. & Xue, A. 2014. Combination 
              of interval-valued belief structures based on intuitionistic fuzzy 
              set. Knowledge-Based Systems 67: 61-70.  Sunberg, Z. & Rogers, 
              J. 2013. A belief function distance metric for orderable sets. Information 
              Fusion 14: 361-373.  Tessem, B. 1993. Approximations 
              for efficient computation in the theory of evidence. Artificial 
              Intelligence 61: 315-329.  Thierry, D. & 
              Philippe, S. 2007. Classification using belief functions: Relationship 
              between case-based and model-based approaches. IEEE Transactions 
              on Systems, Man, and Cybernetics, Part B (Cybernetics) 36: 1395-1406. 
               Verde, R. & Irpino, A. 2008. A new interval data distance based on the 
              Wasserstein metric. In Data Analysis, Machine Learning and Applications. 
              Studies in Classification, Data Analysis, and Knowledge Organization, 
              edited by Preisach, C., Burkhardt, 
              H., Schmidt-Thieme, L. & Decker, R. Berlin, Heidelberg: Springer-Verlag. pp. 705-712.  Wahi, N., Bhatia, A.K. 
              & Bhadauria, S. 2018. Impact of protozoan 
              vahlkampfia sp on the growth of 
              algae Chlorella vulgaris glamtr. 
              Journal of Environmental Biology 39: 109-115.  Wang, Y.M., Yang, 
              J.B., Xu, D.L. & Chin, K.S. 2007. On the combination and normalization 
              of interval-valued belief structures. Information Sciences 177: 
              1230-1247.  Wu, Y., Ren, Z. & 
              Zeng, Z. 2010. Fault diagnosis method based on D-S evidence theory. 
              Prognostics and Health Management Conference. pp. 1-4.  Xu, X.B., Feng, H.S. 
              & Wen, C.L. 2012. A normalization method of interval-valued 
              belief structures. Information - An International Interdisciplinary 
              Journal 15: 239-248.  Yager, R.R. 2001. Dempster-Shafer belief structures with interval valued focal 
              weights. International Journal of Intelligent Systems 16: 
              497-512.  Yang, Y. & Han, 
              D. 2015. A new distance-based total uncertainty measure in the theory 
              of belief functions. Knowledge-Based Systems 94: 114-123. 
               Yang, Y., Zhong, M., Yao, H., Yu, F., Fu, X. & Postolache, O. 2018. Internet of things for smart ports: Technologies 
              and challenges. IEEE Instrumentation and Measurement Magazine 
              21: 34-43.  Yuan, K., Xiao, F., 
              Fei, L., Kang, B. & Deng, Y. 2016. 
              Modeling sensor reliability in fault diagnosis based on evidence 
              theory. Sensors 16: 113.  Zouhal, L.M. & Denoeux, T. 1998. An evidence-theoretic k-NN rule with parameter 
              optimization. Systems Man and Cybernetics Part C (Applications 
              and Reviews) 28: 263-271.    *Corresponding author; email: tyzhangxy@163.com 
           
           |