Sains Malaysiana 48(12)(2019): 2787–2796

http://dx.doi.org/10.17576/jsm-2019-4812-20

 

A Distance Measure of Interval-valued Belief Structures

(Suatu Jarak Pengukuran Nilai Selang Struktur Kepercayaan)

 

JUNQIN CAO1,2, XUEYING ZHANG2* & JIAPENG FENG3

 

1College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China

 

2School of Electronic Information Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China

 

3Tai Yuan Institute of China Coal Technology and Engineering Group, Taiyuan, 030024, China

 

Received: 21 February 2019/Accepted: 23 December 2019

 

ABSTRACT

Interval-valued belief structures are generalized from belief function theory, in terms of basic belief assignments from crisp to interval numbers. The distance measure has long been an essential tool in belief function theory, such as conflict evidence combinations, clustering analysis, belief function and approximation. Researchers have paid much attention and proposed many kinds of distance measures. However, few works have addressed distance measures of interval-valued belief structures up. In this paper, we propose a method to measure the distance of interval belief functions. The method is based on an interval-valued one-dimensional Hausdorff distance and Jaccard similarity coefficient. We show and prove its properties of non-negativity, non-degeneracy, symmetry and triangle inequality. Numerical examples illustrate the validity of the proposed distance.

 

Keywords: Distance; Hausdorff distance; interval-valued belief structures; Jaccard similarity coefficient

 

ABSTRAK

Nilai selang struktur kepercayaan digeneralisasi daripada teori fungsi kepercayaan, dari sudut tugasan kepercayaan asas nombor krisp kepada selang. Jarak pengukuran telah menjadi alat yang penting dalam teori fungsi kepercayaan, seperti gabungan bukti konflik, analisis berkelompok, fungsi kepercayaan dan penganggaran. Penyelidik telah memberi banyak perhatian dan mencadangkan pelbagai jenis jarak pengukuran. Walau bagaimanapun, beberapa kajian telah membincangkan jarak pengukuran nilai selang struktur kepercayaan. Dalam kertas ini, kami mencadangkan kaedah untuk mengukur jarak fungsi selang kepercayaan. Kaedah ini berdasarkan jarak nilai selang satu dimensi Hausdorff dan pekali kesamaan Jaccard. Kami tunjuk dan buktikan sifatnya yang tidak negatif, tidak merosot, simetri dan ketidaksamaan segitiga. Contoh berangka menunjukkan kesahan jarak yang dicadangkan.

 

Kata kunci: Jarak; jarak Hausdorff; nilai selang struktur kepercayaan; pekali kesamaan Jaccard

REFERENCES

Bauer, M. 1997. Approximation algorithms and decision making in the Dempster-Shafer theory of evidence - An empirical study. International Journal of Approximate Reasoning 17: 217-237.

Bouchard, M., Jousselme, A.L. & Doré, P.E. 2013. A proof for the positive definiteness of the Jaccard index matrix. International Journal of Approximate Reasoning 54: 615-626.

Carrillo Pedroza, F.R., Soria Aguilar, M.D.J., Sanchez Castillo, M.A., Martinez Luevanos, A. & Picazo Rodriguez, N.G. 2017. Adsorption of chromium from steel plating wastewater using blast furnace dust. Revista Internacional De Contaminacion Ambiental. 33: 591-603.

Cuzzolin, F. 2011. Lp consonant approximation of belief functions in the mass space. International Symposium on Imprecise Probability Theories and Applications Innsbruck Austria 22: 420-436.

Cuzzolin, F. 2008. A geometric approach to the theory of evidence. IEEE Transactions on Systems Man and Cybernetics Part C - Applications and Reviews 38: 522-534.

de Carvalho, F.D.T. & Pimentel, J.T. 2012. Partitioning fuzzy clustering algorithms for interval-valued data based on Hausdorff distances. IEEE International Conference On Systems, Man, and Cybernetics (SMC), Seoul, South Korea. pp. 1379-1384.

Dempster, A.P. 1967. Upper and lower probabilities induced by a multi-valued mapping. Annals of Mathematical Statistics 38: 325-339.

Deng, Y., Shi, W.K., Zhu, Z.F. & Liu, Q. 2004. Combining belief functions based on distance of evidence. Decision Support Systems 38: 489-493.

Denoeux, T. 1999. Reasoning with imprecise belief structures. International Journal of Approximate Reasoning 20: 79-111.

Denoeux, T. 2000. A neural network classifier based on Dempster- Shafer theory. IEEE Transactions on Systems Man and Cybernetics - Part A Systems and Humans 30: 131-150.

Diaz, J., Rifqi, M. & Bouchon-Meunier, B. 2006. A similarity measure between basic belief assignments. Information Fusion: 9th International Conference. pp. 1-6.

Fallatah, M.M., Kavil, Y.N., Ibrahim, A.S.A., Orif, M.I., Shaban, Y.A. & Farawati, R.A. 2018. Hydrographic parameters and distribution of dissolved Cu, Ni, Zn and nutrients near Jeddah desalination plant. Open Chemistry 16: 246-257.

Fu, C. & Yang, S.L. 2012. The conjunctive combination of interval-valued belief structures from dependent sources. International Journal of Approximate Reasoning 53: 769-785.

Fu, C. & Yang, S.L. 2011. Analyzing the applicability of Dempster’s rule to the combination of interval-valued belief structures. Expert Systems with Applications 38: 4291-4301.

Giang, P.H. 2015. Decision making under uncertainty comprising complete ignorance and probability. International Journal of Approximate Reasoning 62: 27-45.

Gower, J.C. 1971. A general coefficient of similarity and some of its properties. Biometrics 27: 857-871.

Han, D., Dezert, J. & Yang, Y. 2014. New distance measures of evidence based on belief intervals. In Belief Functions: Theory and Application. BELIEF 2014. Lecture Notes in Computer Science, edited by Cuzzolin, F. Switzerland: Springer. 8764: 432-441.

Han, D., Dezert, J., Han, C. & Yang, Y. 2011. New dissimilarity measures in evidence theory. Information Fusion (FUSION), Proceedings of the 14th International Conference. pp. 1-7.

Hariz, S.B., Elouedi, Z. & Mellouli, K. 2006. Clustering approach using belief function theory. Lecture Notes in Computer Science 4183: 162-171.

Huh, E., Lim, S., Kim, H.G., Ha, S.K., Park, H., Huh, Y. & Oh, M.S. 2018. Ginger fermented with schizosaccharomyces pombe alleviates memory impairment via protecting hippocampal neuronal cells in amyloid beta(1-42) plaque injected mice. Food and Function 9: 171-178.

Jaccard, P. 1901. Distribution de la Flore Alpine dans le Bassin des Dranses et dans quelques régions voisines. Bulletin De La Societe Vaudoise Des Sciences Naturelles 37: 241-272.

Jiang, W. & Wang, S. 2017. An uncertainty measure for interval-valued evidences. Int. J. Comput. Commun. Control 12: 631-644.

Jousselme, A.L. & Maupin, P. 2012. Distances in evidence theory: Comprehensive survey and generalizations. International Journal of Approximate Reasoning 53: 118-145.

Jousselme, A.L., Grenier, D. & Bossé, É. 2001. A new distance between two bodies of evidence. Information Fusion 2: 91-101.

Kaushik, N. & Chatterjee, N. 2018. Automatic relationship extraction from agricultural text for ontology construction. Information Processing in Agriculture 5: 60-73.

Klein, J., Destercke, S. & Colot, O. 2016. Interpreting evidential distances by connecting them to partial orders: Application to belief function approximation. International Journal of Approximate Reasoning 71: 15-33.

Lee, E.S. & Zhu, Q. 1992. An interval dempster-shafer approach. Computers and Mathematics with Applications 24: 89-95.

Li, Z., Han, C. & Gu, T. 2018. Economics of biomass gasification: A review of the current status. Energy Sources Part B Economics Planning and Policy 13: 137-140.

Liu, Z., Pan, Q. & Dezert, J. 2014. A belief classification rule for imprecise data. Applied Intelligence 40: 214-228.

Liu, W.R. 2006. Analyzing the degree of conflict among belief functions. Artificial Intelligence 170: 909-924.

Loudahi, M., Klein, J., Vannobel, J.M. & Colot, O. 2016. Evidential matrix metrics as distances between meta-data dependent bodies of evidence. IEEE Transactions on Cybernetics 46: 109-122.

Martin, A., Jousselme, A.L. & Osswald, C. 2008. Conflict measure for the discounting operation on belief functions. International Conference on Information Fusion pp. 1-8.

Mo, H.M., Lu, X. & Deng, Y. 2016. A generalized evidence distance. Journal of Systems Engineering and Electronics 27: 470-476.

Oyekale, A.S. 2017. Cocoa farmers’ safety perception and compliance with precautions in the use of pesticides in centre and western cameroon. Applied Ecology and Environmental Research 15: 205-219.

Sevastianov, P., Dymova, L. & Bartosiewicz, P. 2012. A framework for rule-base evidential reasoning in the interval setting applied to diagnosing Type 2 diabetes. Expert Systems with Applications 39: 4190-4200.

Sevastjanov, P., Bartosiewicz, P. & Tkacz, K. 2010. The normalization of the Dempster’s Rule of combination. Artificial Intelligence and Soft Computing, Pt II 6114: 659- 666.

Shafer, G. 1976. A Mathematical Theory of Evidence. Princeton: Princeton University Press.

Sigren, J.M., Figlus, J., Highfield, W., Feagin, R.A. & Armitage, A.R. 2018. The effects of coastal dune volume and vegetation on storm-induced property damage: Analysis from hurricane ike. Journal of Coastal Research 34: 164-173.

Skibicki, D., Pejkowski, L. & Stopel, M. 2017. Finite element analysis of ventilation system fire damper dynamic time-history. Polish Maritime Research 24: 116-123.

Smets, P. & Kennes, R. 1994. The transferable belief model. Artificial Intelligence 66: 191-234.

Song, Y., Wang, X., Lei, L. & Yue, S. 2016. Uncertainty measure for interval-valued belief structures. Measurement 80: 241- 250.

Song, Y., Wang, X., Lei, L. & Xue, A. 2014. Combination of interval-valued belief structures based on intuitionistic fuzzy set. Knowledge-Based Systems 67: 61-70.

Sunberg, Z. & Rogers, J. 2013. A belief function distance metric for orderable sets. Information Fusion 14: 361-373.

Tessem, B. 1993. Approximations for efficient computation in the theory of evidence. Artificial Intelligence 61: 315-329.

Thierry, D. & Philippe, S. 2007. Classification using belief functions: Relationship between case-based and model-based approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 36: 1395-1406.

Verde, R. & Irpino, A. 2008. A new interval data distance based on the Wasserstein metric. In Data Analysis, Machine Learning and Applications. Studies in Classification, Data Analysis, and Knowledge Organization, edited by Preisach, C., Burkhardt, H., Schmidt-Thieme, L. & Decker, R. Berlin, Heidelberg: Springer-Verlag. pp. 705-712.

Wahi, N., Bhatia, A.K. & Bhadauria, S. 2018. Impact of protozoan vahlkampfia sp on the growth of algae Chlorella vulgaris glamtr. Journal of Environmental Biology 39: 109-115.

Wang, Y.M., Yang, J.B., Xu, D.L. & Chin, K.S. 2007. On the combination and normalization of interval-valued belief structures. Information Sciences 177: 1230-1247.

Wu, Y., Ren, Z. & Zeng, Z. 2010. Fault diagnosis method based on D-S evidence theory. Prognostics and Health Management Conference. pp. 1-4.

Xu, X.B., Feng, H.S. & Wen, C.L. 2012. A normalization method of interval-valued belief structures. Information - An International Interdisciplinary Journal 15: 239-248.

Yager, R.R. 2001. Dempster-Shafer belief structures with interval valued focal weights. International Journal of Intelligent Systems 16: 497-512.

Yang, Y. & Han, D. 2015. A new distance-based total uncertainty measure in the theory of belief functions. Knowledge-Based Systems 94: 114-123.

Yang, Y., Zhong, M., Yao, H., Yu, F., Fu, X. & Postolache, O. 2018. Internet of things for smart ports: Technologies and challenges. IEEE Instrumentation and Measurement Magazine 21: 34-43.

Yuan, K., Xiao, F., Fei, L., Kang, B. & Deng, Y. 2016. Modeling sensor reliability in fault diagnosis based on evidence theory. Sensors 16: 113.

Zouhal, L.M. & Denoeux, T. 1998. An evidence-theoretic k-NN rule with parameter optimization. Systems Man and Cybernetics Part C (Applications and Reviews) 28: 263-271.

 

*Corresponding author; email: tyzhangxy@163.com

 

 

 

 

 

previous