Sains Malaysiana 48(12)(2019): 2787–2796
http://dx.doi.org/10.17576/jsm-2019-4812-20
A Distance Measure of Interval-valued
Belief Structures
(Suatu Jarak Pengukuran Nilai Selang Struktur
Kepercayaan)
JUNQIN CAO1,2,
XUEYING
ZHANG2*
& JIAPENG FENG3
1College of Information
and Computer, Taiyuan University of Technology, Taiyuan, 030024,
China
2School of Electronic
Information Engineering, Taiyuan University of Science and Technology,
Taiyuan, 030024, China
3Tai Yuan Institute
of China Coal Technology and Engineering Group, Taiyuan, 030024,
China
Received: 21 February 2019/Accepted:
23 December 2019
ABSTRACT
Interval-valued belief structures
are generalized from belief function theory, in terms of basic belief
assignments from crisp to interval numbers. The distance measure
has long been an essential tool in belief function theory, such
as conflict evidence combinations, clustering analysis, belief function
and approximation. Researchers have paid much attention and proposed
many kinds of distance measures. However, few works have addressed
distance measures of interval-valued belief structures up. In this
paper, we propose a method to measure the distance of interval belief
functions. The method is based on an interval-valued one-dimensional
Hausdorff distance and Jaccard
similarity coefficient. We show and prove its properties of non-negativity,
non-degeneracy, symmetry and triangle inequality. Numerical examples
illustrate the validity of the proposed distance.
Keywords: Distance; Hausdorff distance; interval-valued belief structures; Jaccard similarity coefficient
ABSTRAK
Nilai selang struktur kepercayaan digeneralisasi daripada teori fungsi kepercayaan, dari sudut tugasan
kepercayaan asas
nombor krisp kepada
selang. Jarak pengukuran
telah menjadi alat
yang penting dalam
teori fungsi kepercayaan,
seperti gabungan
bukti konflik, analisis berkelompok, fungsi kepercayaan dan penganggaran. Penyelidik telah memberi banyak perhatian dan mencadangkan
pelbagai jenis
jarak pengukuran. Walau bagaimanapun, beberapa kajian telah membincangkan jarak pengukuran nilai selang struktur
kepercayaan. Dalam
kertas ini, kami mencadangkan kaedah untuk mengukur jarak fungsi selang
kepercayaan. Kaedah
ini berdasarkan jarak nilai selang
satu dimensi
Hausdorff dan pekali
kesamaan Jaccard.
Kami tunjuk dan buktikan
sifatnya yang tidak
negatif, tidak merosot, simetri dan ketidaksamaan segitiga. Contoh berangka menunjukkan kesahan jarak yang dicadangkan.
Kata kunci: Jarak;
jarak Hausdorff;
nilai selang struktur
kepercayaan; pekali
kesamaan Jaccard
REFERENCES
Bauer, M. 1997. Approximation
algorithms and decision making in the Dempster-Shafer
theory of evidence - An empirical study. International Journal
of Approximate Reasoning 17: 217-237.
Bouchard, M., Jousselme, A.L. & Doré, P.E.
2013. A proof for the positive definiteness of the Jaccard
index matrix. International Journal of Approximate Reasoning
54: 615-626.
Carrillo Pedroza, F.R., Soria Aguilar, M.D.J., Sanchez Castillo, M.A.,
Martinez Luevanos, A. & Picazo
Rodriguez, N.G. 2017. Adsorption of chromium from steel plating
wastewater using blast furnace dust. Revista
Internacional De Contaminacion Ambiental. 33: 591-603.
Cuzzolin, F. 2011. Lp consonant approximation of belief functions in the mass
space. International Symposium on Imprecise Probability Theories
and Applications Innsbruck Austria 22: 420-436.
Cuzzolin, F. 2008. A geometric
approach to the theory of evidence. IEEE Transactions on Systems
Man and Cybernetics Part C - Applications and Reviews 38: 522-534.
de Carvalho, F.D.T. & Pimentel, J.T. 2012. Partitioning fuzzy
clustering algorithms for interval-valued data based on Hausdorff distances. IEEE International Conference On Systems,
Man, and Cybernetics (SMC), Seoul, South Korea. pp. 1379-1384.
Dempster, A.P. 1967. Upper
and lower probabilities induced by a multi-valued mapping. Annals
of Mathematical Statistics 38: 325-339.
Deng, Y., Shi, W.K.,
Zhu, Z.F. & Liu, Q. 2004. Combining belief functions based on
distance of evidence. Decision Support Systems 38: 489-493.
Denoeux, T. 1999. Reasoning
with imprecise belief structures. International Journal of Approximate
Reasoning 20: 79-111.
Denoeux, T. 2000. A neural
network classifier based on Dempster-
Shafer theory. IEEE Transactions on Systems Man and Cybernetics
- Part A Systems and Humans 30: 131-150.
Diaz, J., Rifqi, M. & Bouchon-Meunier,
B. 2006. A similarity measure between basic belief assignments.
Information Fusion: 9th International Conference. pp. 1-6.
Fallatah, M.M., Kavil, Y.N., Ibrahim, A.S.A., Orif,
M.I., Shaban, Y.A. & Farawati,
R.A. 2018. Hydrographic parameters and distribution of dissolved
Cu, Ni, Zn and nutrients near Jeddah desalination plant. Open
Chemistry 16: 246-257.
Fu, C. & Yang,
S.L. 2012. The conjunctive combination of interval-valued belief
structures from dependent sources. International Journal of Approximate
Reasoning 53: 769-785.
Fu, C. & Yang,
S.L. 2011. Analyzing the applicability of Dempster’s
rule to the combination of interval-valued belief structures. Expert
Systems with Applications 38: 4291-4301.
Giang, P.H. 2015. Decision
making under uncertainty comprising complete ignorance and probability.
International Journal of Approximate Reasoning 62: 27-45.
Gower, J.C. 1971.
A general coefficient of similarity and some of its properties.
Biometrics 27: 857-871.
Han, D., Dezert, J. & Yang, Y. 2014. New distance measures of evidence
based on belief intervals. In Belief Functions: Theory and Application.
BELIEF 2014. Lecture Notes in Computer Science, edited by Cuzzolin, F. Switzerland: Springer. 8764: 432-441.
Han, D., Dezert, J., Han, C. & Yang, Y. 2011. New dissimilarity
measures in evidence theory. Information Fusion (FUSION), Proceedings
of the 14th International Conference. pp. 1-7.
Hariz, S.B., Elouedi, Z. & Mellouli, K. 2006.
Clustering approach using belief function theory. Lecture Notes
in Computer Science 4183: 162-171.
Huh, E., Lim, S.,
Kim, H.G., Ha, S.K., Park, H., Huh, Y. & Oh, M.S. 2018. Ginger
fermented with schizosaccharomyces pombe
alleviates memory impairment via protecting hippocampal neuronal
cells in amyloid beta(1-42) plaque injected
mice. Food and Function 9: 171-178.
Jaccard, P. 1901. Distribution
de la Flore Alpine dans le Bassin des Dranses et dans quelques régions
voisines. Bulletin De La Societe
Vaudoise Des
Sciences Naturelles 37: 241-272.
Jiang, W. & Wang,
S. 2017. An uncertainty measure for interval-valued evidences. Int.
J. Comput. Commun.
Control 12: 631-644.
Jousselme, A.L. & Maupin,
P. 2012. Distances in evidence theory: Comprehensive survey and
generalizations. International Journal of Approximate Reasoning
53: 118-145.
Jousselme, A.L., Grenier, D. & Bossé, É. 2001.
A new distance between two bodies of evidence. Information Fusion
2: 91-101.
Kaushik, N. &
Chatterjee, N. 2018. Automatic relationship extraction from agricultural
text for ontology construction. Information Processing in Agriculture
5: 60-73.
Klein, J., Destercke, S. & Colot, O. 2016.
Interpreting evidential distances by connecting them to partial
orders: Application to belief function approximation. International
Journal of Approximate Reasoning 71: 15-33.
Lee, E.S. & Zhu,
Q. 1992. An interval dempster-shafer approach.
Computers and Mathematics with Applications 24: 89-95.
Li, Z., Han, C. &
Gu, T. 2018. Economics of biomass gasification:
A review of the current status. Energy Sources Part B Economics
Planning and Policy 13: 137-140.
Liu, Z., Pan, Q.
& Dezert, J. 2014. A belief classification
rule for imprecise data. Applied Intelligence 40: 214-228.
Liu, W.R. 2006. Analyzing
the degree of conflict among belief functions. Artificial Intelligence
170: 909-924.
Loudahi, M., Klein, J.,
Vannobel, J.M. & Colot, O. 2016.
Evidential matrix metrics as distances between meta-data dependent
bodies of evidence. IEEE Transactions on Cybernetics 46:
109-122.
Martin, A., Jousselme, A.L. & Osswald, C.
2008. Conflict measure for the discounting operation on belief functions.
International Conference on Information Fusion pp. 1-8.
Mo, H.M., Lu, X.
& Deng, Y. 2016. A generalized evidence distance. Journal
of Systems Engineering and Electronics 27: 470-476.
Oyekale, A.S. 2017. Cocoa farmers’ safety
perception and compliance with precautions in the use of pesticides
in centre and western cameroon. Applied
Ecology and Environmental Research 15: 205-219.
Sevastianov,
P., Dymova, L. & Bartosiewicz,
P. 2012. A framework for rule-base evidential reasoning in the interval
setting applied to diagnosing Type 2 diabetes. Expert Systems
with Applications 39: 4190-4200.
Sevastjanov, P., Bartosiewicz, P. & Tkacz, K.
2010. The normalization of the Dempster’s
Rule of combination. Artificial Intelligence and Soft Computing,
Pt II 6114: 659- 666.
Shafer, G. 1976.
A Mathematical Theory of Evidence. Princeton: Princeton University
Press.
Sigren, J.M., Figlus, J., Highfield, W., Feagin, R.A. & Armitage, A.R. 2018. The effects of coastal
dune volume and vegetation on storm-induced property damage: Analysis
from hurricane ike. Journal of Coastal
Research 34: 164-173.
Skibicki, D., Pejkowski, L. & Stopel, M. 2017.
Finite element analysis of ventilation system fire damper dynamic
time-history. Polish Maritime Research 24: 116-123.
Smets, P. & Kennes, R. 1994. The transferable belief model. Artificial
Intelligence 66: 191-234.
Song, Y., Wang, X.,
Lei, L. & Yue, S. 2016. Uncertainty measure for interval-valued
belief structures. Measurement 80: 241- 250.
Song, Y., Wang, X.,
Lei, L. & Xue, A. 2014. Combination
of interval-valued belief structures based on intuitionistic fuzzy
set. Knowledge-Based Systems 67: 61-70.
Sunberg, Z. & Rogers,
J. 2013. A belief function distance metric for orderable sets. Information
Fusion 14: 361-373.
Tessem, B. 1993. Approximations
for efficient computation in the theory of evidence. Artificial
Intelligence 61: 315-329.
Thierry, D. &
Philippe, S. 2007. Classification using belief functions: Relationship
between case-based and model-based approaches. IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics) 36: 1395-1406.
Verde, R. & Irpino, A. 2008. A new interval data distance based on the
Wasserstein metric. In Data Analysis, Machine Learning and Applications.
Studies in Classification, Data Analysis, and Knowledge Organization,
edited by Preisach, C., Burkhardt,
H., Schmidt-Thieme, L. & Decker, R. Berlin, Heidelberg: Springer-Verlag. pp. 705-712.
Wahi, N., Bhatia, A.K.
& Bhadauria, S. 2018. Impact of protozoan
vahlkampfia sp on the growth of
algae Chlorella vulgaris glamtr.
Journal of Environmental Biology 39: 109-115.
Wang, Y.M., Yang,
J.B., Xu, D.L. & Chin, K.S. 2007. On the combination and normalization
of interval-valued belief structures. Information Sciences 177:
1230-1247.
Wu, Y., Ren, Z. &
Zeng, Z. 2010. Fault diagnosis method based on D-S evidence theory.
Prognostics and Health Management Conference. pp. 1-4.
Xu, X.B., Feng, H.S.
& Wen, C.L. 2012. A normalization method of interval-valued
belief structures. Information - An International Interdisciplinary
Journal 15: 239-248.
Yager, R.R. 2001. Dempster-Shafer belief structures with interval valued focal
weights. International Journal of Intelligent Systems 16:
497-512.
Yang, Y. & Han,
D. 2015. A new distance-based total uncertainty measure in the theory
of belief functions. Knowledge-Based Systems 94: 114-123.
Yang, Y., Zhong, M., Yao, H., Yu, F., Fu, X. & Postolache, O. 2018. Internet of things for smart ports: Technologies
and challenges. IEEE Instrumentation and Measurement Magazine
21: 34-43.
Yuan, K., Xiao, F.,
Fei, L., Kang, B. & Deng, Y. 2016.
Modeling sensor reliability in fault diagnosis based on evidence
theory. Sensors 16: 113.
Zouhal, L.M. & Denoeux, T. 1998. An evidence-theoretic k-NN rule with parameter
optimization. Systems Man and Cybernetics Part C (Applications
and Reviews) 28: 263-271.
*Corresponding author; email: tyzhangxy@163.com
|