Sains Malaysiana 48(1)(2019):
1–6
http://dx.doi.org/10.17576/jsm-2019-4801-01
Gastric Emptying and the Enzymatic Activity in the Stomach
of Amphiprion ocellaris Fed on Artificial Diet
(Pengosongan Perut dan Aktiviti Enzim dalam Perut Amphiprion
ocellaris yang Diberi Diet Buatan)
MEI LING KHOO1, SIMON KUMAR DAS1,2* & MAZLAN ABD. GHAFFAR3
1Marine Ecosystem Research Centre
(EKOMAR) Faculty of Science and Technology, Universiti
Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2School of Environmental and Natural
Resource Sciences, Faculty of Science and Technology, Universiti
Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
3Institute of Oceanography and
Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus,
Terengganu
Darul Iman, Malaysia
Received:
15 September 2017/Accepted: 20 August 2018
ABSTRACT
This study aims to elucidate the gastric emptying process of
clownfish fed on artificial diet using two gastric evacuation models and to determine
the pepsin activity in the digestion process in relation to feeding time.
Regression analysis was used to evaluate the adequacy of 2 models; Anderson’s
[St = So(1-So(α-1)ρ(1-α)t)1/(1-α) +
ξ ] and Grove’s model [St = (Soα – αKt)1/α ],
in describing the gastric emptying rate. Grove’s model provided a better fit
with higher r2 value, with the calculated parameters of maximum meal
size at time 0 (S0) = 0.195 g and gastric emptying rate
(K) = 0.0165 g h-1. There was no initial delay phase
as predicted and the evacuation followed a curve. Pepsin activity in the
stomach showed rapid responses to food intake, where activity was detected at 1
h after feeding and reached its peak at 2 h after feeding. Pepsin activity
decreased since then until the 12th h after feeding where it reached the lowest
point. An increase of pepsin activity was detected later, where a small boost
was detected at 24 h after feeding to digest the remaining food item in the
stomach before the pepsin secretion decreased and maintained at pre-feeding
level. Fast response of digestive enzyme in stomach implied that clownfish is
equipped to utilize infrequent and irregular meals effectively.
Keywords: Amphiprion
ocellaris; evacuation model; gastric digestion, pepsin activity
ABSTRAK
Kajian ini bertujuan untuk menjelaskan proses pengosongan perut
ikan badut yang diberi diet buatan dengan menggunakan dua model pengosongan
gastrik dan untuk menentukan hubungan antara aktiviti enzim pepsin dalam proses
pencernaan dengan masa selepas makan. Analisis regresi digunakan untuk menentukan
ketepatan dua model; model Anderson [St = So(1-So(α-1)ρ(1-α)t)1/(1-α) +
ξ] dan model Grove [St = (Soα – αKt)1/α],
dalam penentuan kadar pengosongan perut selepas makan. Model Grove lebih sesuai
kerana mempunyai nilai r yang lebih tinggi dengan parameter yang dikira
merupakan saiz hidangan maksimum pada masa 0(S0) =
0.195 g dan kadar pengosongan perut (K) = 0.0165 g per
jam. Tiada fasa lewat pada permulaan proses penghadaman seperti yang
dianggarkan dan pengosongan perut adalah sejajar dengan lengkungan. Aktiviti enzim
pepsin dalam perut menunjukkan tindak balas yang pantas terhadap pengambilan
makanan dengan aktiviti pepsin dikesan seawal 1 jam selepas makan dan mencapai
kemuncaknya pada masa 2 jam selepas makan. Aktiviti pepsin kemudiannya semakin
menurun sehingga mencapai tahap terendahnya pada jam 12 selepas makan. Selepas
itu, aktiviti pepsin meningkat semula dan terdapat
rangsangan kecil dalam rembesan enzim yang dikesan pada 24 jam selepas makan. Aktiviti pepsin kemudiannya menurun semula kepada tahap sebelum
makan. Tindak balas yang cepat terhadap pengambilan
makanan menunjukkan ikan badut mampu menghadapi keadaan pembekalan makanan yang
tidak menentu dengan berkesan.
Kata kunci: Aktiviti pepsin;
Amphiprion ocellaris; model pengosongan; penghadaman
gastrik
REFERENCES
Andersen,
N.G. 1999. The effects of predator size, temperature and prey
characteristics on gastric evacuation in whiting. Journal of Fish
Biology 54: 287-301.
Andersen,
N.G. 1998. Effect of meal size on gastric evacuation in
whiting. Journal of Fish Biology 52: 743-755.
Bradford, M. 1976. A rapid and
sensitive method for quantification of microgram quantities of protein
utilizing the principle of protein dye-binding. Analytical
Biochemistry 72: 248-254.
Caruso, G., Denaro, M.G. & Genovese, L. 2008. Temporal changes in digestive enzyme activities in gastrointestinal
tract of Europoean eel (Anguilla anguilla) (Linneo 1758) following
feeding. Marine and Freshwater Behaviour and Physiology 41:
215-228.
Cato,
J.C. & Brown, C.L. 2003. Marine Ornamental Species: Collection, Culture,
and Conservation. Ames: Iowa State Press.
Chapman,
F.A., Fitz-Coy, S.A., Thunberg, E.M. & Adams, C.M. 1997. United States of
America trade in ornamental fish. Journal of the World Aquaculture Society 28:
1-10.
Einarsson, S., Davies, P.S. & Talbot, C. The effect of feeding on the secretion of pepsin, trypsin and chromotrypsin in
the Atlantic salmon, Salmo salar L. Fish Physiology and Biochemistry 15:
439-446.
Fänge,
R. & Grove, D.J. 1979. Digestion in fish physiology. Volume VIII. In Bioenergetics and Growth, edited by Hoar, W.S., Randall,
D.J. & Brett, J.R. Orlando: Academic Press Inc. pp
172-241.
Fautin,
D.G. & Allen, G.R. 1992. Anemone Fishes and their Host Sea Anemones, a
Guide for Aquarists and Divers. Perth: Western Australian Museum. p. 160.
Grove,
D.J., Genna, R., Paralika, V., Boraston, J., Hornyold, M.G. & Siemens, R.
2001. Effects of dietary water content on meal size, food intake, digestion and
growth in turbot, Scophthalmus maximus (L.). Aquaculture Research 32:
433-442.
Grove, D.J., Moctezuma, M.A., Flett, H.R.J., Foott, J.S.,
Watson, T. & Flowerdew, M.W. 1985. Gastric emptying and
the return of appetite of juvenile turbot, Scopthalmus maximus L. fed on
artificial diets. Journal of Fish Biology 26: 339-354.
Hashim, M., Abidin, D.A.Z., Simon, K.D. & Mazlan, A.G.
2018. Gastric emptying and food consumption of Scatophagus argus. AACL Bioflux 11(1): 278-287.
Hughes,
S.G. & Barrows, R. 1990. Measurement of the abilities of
cultured fishes to moisten their digesta. Comparative
Biochemistry and Physiology A96: 109-111.
Jones, R. 1974. The rate of
elimination of food from the stomachs of haddock Melanogrammus eaeglefinus,
cod, Gadus morhua and whiting Merlangius merlangus. Journal du Conseil/ Conseil Permanent International pour
l’Exploration de la Mer 35(3): 225-243.
Khoo,
M.L. & Mazlan, A.G. 2014. Estimation of gastric emptying
time (GET) in clownfish (Amphiprion ocellaris) using x-radiography
technique. AIP Proceedings 1614: 624-628.
Kristiansen,
H.R. & Rankin, J.C. 2001. Discrimination between endogenous and exogenous
water sources in juvenile rainbow trout fed extruded dry feed. Aquatic
Living Resources 14: 359-366.
Liew,
H.J., Ambak, M.A. & Abol-Munafi, A.B. 2006. Embryonic
development of clownfish Amphiprion ocellaris under laboratory
conditions. Journal of Sustainable Science and Management 1(1):
64-73.
Maison,
K.A. & Graham, K.S. 2015. Status review report: Orange clownfish (Amphiprion
percula). Report to National Marine Fisheries Service,
Office of Protected Resources. p. 67.
Mazlan,
A.G. 2001. Food consumption patterns and dietary digestibility of whiting (Merlangius
merlangus L.) fed in laboratory conditions. Ph.D Thesis, University of
Wales Bangor (Unpublished).
Mazumber,
S.K., Mazlan, A.G. & Simon, K.D. 2015. The effects of
temperature on gastric emptying time of Malabar Blood Snapper (Lutjanus
malabaricus, Bloch & Schneider 1801) using X-radiography technique. AIP Conference Proceedings 1678: 020032-1-023332-4.
McCarthy, I.D., Houlihan, D.F., Carter, C.G. & Moutou,
K. 1993. Variation in individual food consumption
rates of fish and its implications for study of fish nutrition and physiology. Proceedings of the Nutrition Society 52: 427-436.
Moumita, D., Mazlan, A.G. & Simon, K.D. 2014. Temperature effect on gastric emptying time of hybrid grouper (Epinephelus spp.). AIP Conf. Proc. 1614: 616-618.
Moumita, D., Mazlan, A.G., Bakar, Y. & Simon, K.D. 2016. Effect of temperature and diet on growth and gastric emptying time of the
hybrid, Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂. Aquaculture Reports 4: 118-124.
Myers, R. 1999. Miconesian Reef Fish: A Field Guide
for Divers and Aquarists. Barrigada: Coral Graphics.
Onishi, T., Murayama, S. & Takeuchi, M. 1976. Sequence of digestive enzyme levels in carp after feeding. III. Responses of protease and amylase to twice-a-day feeding. Bulletin of
the Japanese Society for the Science of Fish 42: 921-929.
Onishi, T., Murayama, S. & Takeuchi, M. 1973a. Sequence of digestive enzyme levels in carp after feeding. I. Amylase and protease of intestinal content, hepatopancreas and gallbladder. Bull.
Tokai. Reg. Res. Lab. 75:
23-31.
Onishi, T., Murayama, S. & Takeuchi, M. 1973b. Sequence of digestive enzyme levels in carp after feeding. II. Protease in activated and zymogen forms of intestine, hepatopancreas,
gallbladder and spleen. Bull. Tokai. Reg. Res. Lab. 75: 33-38.
Palanisamy,
K. 1989. Studies on the digestive enzymes of the cultivable grey mullet Liza
parsia (Hamilton Buchanan, 1822). Ph.D. Thesis, Cochin
University of Science and Technology (Unpublished).
Riche, M., Haley, D.I., Oetker, M., Garbrecht, S. &
Garling, D.L. 2004. Effect of feeding
frequency on gastric evacuation and the return of appetite in tilapia Oreochromis
niloticus (L.) Aquaculture 234: 657-673.
Ruohonen,
K., Grove, D.J. & MclLroy, J.T. 1997. The amount of food ingested in a
single meal by rainbow trout offered chopped herring, dry and wet diets. Journal of Fish Biology 51(1): 93-105.
Ruohonen,
K., Vielma, J. & Grove, D.J. 1998. Comparison of nutrient
loss into the water from rainbow trout culture based on fresh Baltic herring,
moist and dry diets. Aquaculture
International 6: 441-450.
Sano, M., Shimizu, M. & Nose, Y. 1984. Food Habits of Teleostean Reef Fishes in Okinawa Island, Southern Japan. Japan:
University of Tokyo Press.
Sin, T.M., Teo, M.M., Ng, P.K.L., Chou, L.M. & Khoo,
H.W. 1994. The damselfishes (Pisces: Osteichthyes: Pomacentridae) of
Peninsular Malaysia and Singapore: Systematic, ecology and conservation. Hydrobiologia 285: 49-58.
Smith,
L.S. 1989. Digestive functions in teleost fishes. In Fish Nutrition. 2nd ed., edited by Halver, J.E. New York: Academic
Press. pp. 405-407.
Smit,
H. 1968. Gastric secretion in the lower vertebrates and
birds. In Handbook of Physiology
Section 6: A1imentary Canal, edited by Code, C.F. Washington: American
Physiological Society. pp. 2791-2805.
Takii, K., Shimeno, S. & Takeda, M. 1985. Changes in digestive enzyme activities in ee1 after feeding. Bulletin of the Japanese Society for the
Science of Fish 51(12): 2027-2031.
Uys, W., Hecht, T. & Walters, M. 1987. Changes in digestive enzyme activities of Clarias gariepinus
(Pisces: Clariidae) after feeding. Aquaculture 63: 243-250.
Wabnitz, C., Taylor, M., Green, E. & Razak, T. 2003. From Ocean to Aquarium. The Global Trade in Marine Ornamental
Species. Biodiversity Series 17. Cambridge: UNEP-WCMC.
Western,
J.R.H. & Jennings, J.B. 1970. Histochemical demonstration
of hydrochloric acid in the gastric tubules of teleosts using an in vivo
Prussian b1ue technique. Comparative
Biochemistry and Physiology 35: 879-884.
Windell,
J.T., Hubbard, J.T. & Horak, D.L. 1972. Rate of gastric evacuation in rainbow
trout fed three pelleted diets. Progressive Fish-Culturist 34: 156-159.
Worthington, V. 1993. Worthington Enzyme Manual. Enzymes and Related
Biochemicals Worthington Chemical. New Jersey: United States. p.
399.
*Corresponding author; email: skdas_maa@yahoo.com