Sains Malaysiana 48(1)(2019): 7–13
http://dx.doi.org/10.17576/jsm-2019-4801-02
Effects of Lignosulfonates on Callus Proliferation
and Shoot Induction of Recalcitrant Indica
Rice
(Kesan Lignosulfonat ke atas Proliferasi Kalus dan Induksi
Tunas Beras Indica
Rekalsitran)
LEE-YOON
LOW1,
JANNA
ONG
ABDULLAH1,
CHIEN-YEONG
WEE2,
ROGAYAH
SEKELI2,
CHUN-KEAT
TAN3,
JIUN-YAN
LOH4
& KOK-SONG LAI1*
1Department of Cell and Molecular Biology, Faculty of Biotechnology
and Biomolecular Sciences, Universiti
Putra Malaysia, 43400 UPM Serdang, Selangor
Darul Ehsan, Malaysia
2Biotechnology and Nanotechnology Research Centre, MARDI Headquarters,
Persiaran MARDI-UPM, 43400 Serdang, Selangor Darul Ehsan, Malaysia
3Agro-Biotechnology Institute Malaysia (ABI), National Institutes
of Biotechnology Malaysia (NIBM), c/o MARDI Headquarters, 43400
Serdang, Selangor Darul Ehsan, Malaysia
4Functional Food Research Group, Faculty of Applied Sciences, UCSI
University, No. 1, Jalan Menara Gading,
UCSI Height, 56000 Cheras, Kuala Lumpur,
Federal Territory, Malaysia
Received: 2 February 2018/Accepted: 24 August 2018
ABSTRACT
In vitro culture of recalcitrant
indica rice cultivar through intervening
callus is difficult due to long regeneration period. Therefore,
this study was undertaken to evaluate the growth promoting effects
of lignosulfonate (LS) on callus proliferation and shoot
induction of Malaysian recalcitrant indica
rice cv. MR219. LS is a by-product of wood industry,
commonly used as a plant growth enhancer. Seed derived calli were proliferated on Murashige
and Skoog (MS) medium supplemented with different ion-chelated LS
(calcium LS:
CaLS and sodium LS:
NaLS) at 50, 100, 150, and 200 mg/L. MS supplemented
with 100 mg/L CaLS significantly increased
the callus proliferation rate and adventitious root formation. In
shoot induction study, both LSs did not enhance the shoot induction efficiency as compared
to the control. However, the formation of albino shoot increased
in MS
fortified with 100 mg/L CaLS.
Further chlorophyll and molecular analyses showed that, albino shoots
induced from 100 mg/L CaLS had severe
reduction in total chlorophyll content and expression of both chlorophyll-associated
genes, chlorophyll a/b-binding protein 1 (OsCAB1R) and young
seedling albino (OsYSA). Taken together,
LS improves callus proliferation rate and modulate different
physiological responses during plant growth of recalcitrant indica rice.
Keywords: Albino; callus proliferation;
indica cv.
MR219;
lignosulfonate; regeneration
ABSTRAK
Pengkulturan kultivar beras indica rekalsitran
secara in vitro melalui
kalus intervensi
adalah sukar kerana
tempoh regenerasinya
yang panjang. Oleh itu,
kajian ini dijalankan untuk menilai kesan lignosulfonat
(LS)
terhadap proliferasi
kalus dan induksi
tunas beras indica
rekalsitran Malaysia cv. MR219.
LS
adalah produk
sampingan daripada
industri kayu yang biasanya digunakan sebagai perangsang pertumbuhan tumbuhan dalam baja. Kalus
diperoleh daripada
biji diproliferasi atas medium Murashige dan Skoog (MS) yang ditambah
dengan pengikat
ion LS
(kalsium LS: CaLS
dan natrium
LS:
NaLS) pada kepekatan
50, 100, 150 dan 200 mg/L. MS yang
ditambah dengan
100 mg/L CaLS didapati meningkatkan
kadar perkembangan
kalus dan pembentukan
akar serabut.
Dalam kajian induksi
tunas, kedua-dua LSs
tidak meningkatkan kecekapan induksi berbanding dengan kawalan. Walau bagaimanapun, penghasilan albino
meningkat pada MS yang ditambah dengan 100 mg/L CaLS. Analisis klorofil dan molekul
menunjukkan bahawa
albino yang diinduksi daripada
100 mg/L CaLS mempunyai
pengurangan yang banyak dalam jumlah kandungan
klorofil dan
pengekspresan kedua-dua gen yang
berkaitan dengan klorofil, chlorophyll a/b-binding protein 1 (OsCAB1R)
dan young seedling albino (OsYSA).
Sebagai kesimpulan,
LS
meningkatkan kadar proliferasi kalus dan memodulasi tindak balas fisiologi
yang berlainan semasa
pertumbuhan beras indica rekalsitran.
Kata kunci: Albino; indica cv. MR219; lignosulfonat;
proliferasi kalus;
regenerasi
REFERENCES
Abiri, R., Maziah, M., Shaharuddin,
N.A., Yusof, Z.N.B., Atabaki,
N., Hanafi, M.M., Sahebi, M., Azizi,
P., Kalhori, N. & Valdiani,
A. 2017. Enhancing somatic embryogenesis of Malaysian rice cultivar
MR219 using adjuvant materials in a high-efficiency protocol. International
Journal of Environmental Science and Technology 14(5): 1091-1108.
Almas,
A.R., Afanou, A.K. & Krogstad, T.
2014. Impact of lignosulfonate on solution chemistry and phospholipid
fatty acid composition in soils. Pedosphere 24(3): 308-321.
Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts, polyphenoxidase in Beta vulgaris. Plant Physiology
24(1): 1-15.
Andrew Kok, D.X., Low, L.Y., Zetty, N.B.Y.,
Rogayah, S., Wee, C.Y. & Lai, K.S.
2018. Iron biofortification of rice: Progress
and prospects. Intech Open
Croatia ISBN978-953-51-330-8 (In press).
Carrasco, J., Kovács, K., Czech,
V., Fodor, F., Lucena, J.J., Vértes, A. & Hernández-Apaolaza,
L. 2012. Influence of pH, iron source, and Fe/ligand ratio on iron
speciation in lignosulfonate complexes studied using Mössbauer
spectroscopy. Implications on their fertilizer properties. Journal
of Agricultural and Food Chemistry 60(13): 3331-3340.
Cieschi, M.T., Benedicto, A., Hernández-Apaolaza,
L. & Lucena, J.J. 2016. EDTA shuttle
effect vs. lignosulfonate direct effect providing Zn to Navy Bean
plants (Phaseolus vulgaris L. ‘Negro Polo’) in a calcareous
soil. Frontiers in Plant Science 7: 1767.
DalCorso, G., Farinati, S. & Furini, A. 2010.
Regulatory networks of cadmium stress in plants. Plant Signaling
and Behavior 5(6): 663-667.
Docquier, S., Kevers, C., Lambe, P., Gaspar, T.
& Dommes, J. 2007. Beneficial use
of lignosulfonates in in vitro plant cultures: Stimulation
of growth, of multiplication and of rooting. Plant Cell, Tissue
and Organ Culture 90(3): 285-291.
Ertani, A., Francioso, O., Tugnoli, V., Righi, V. & Nardi, S. 2011.
Effect of commercial lignosulfonate-humate
on Zea mays L. metabolism. Journal of Agricultural
and Food Chemistry 59(22): 11940-11948.
Food and Agriculture
Organization (FAO). 2017. GIEWS - Global information and early warning
system. The United Nation. http://www.fao.org/giews/countrybrief/country.
jsp?code=MYS. Accessed by 10 November 2017.
Food and Fertilizer
Technology Center (FFTC). 2002. MR219, A New High-Yielding Rice
Variety with Yields of More than 10 MT/Ha. For the Asian and Pacific
Region. http://www. fftc.agnet.org/library.php?func=view&id=20110725142748 &type_id=8.
Accessed on 11 December 2017.
Gamborg, O.L., Miller,
R. & Ojima, K. 1968. Nutrient requirements
of suspension cultures of soybean root cells. Experimental Cell
Research 50(1): 151-158.
Gaspar, T., Kevers, C., Penel, C., Greppin, H., Reid, D.M. & Thorpe, T.A. 1996. Plant hormones
and plant growth regulators in plant tissue culture. In Vitro
Cellular and Developmental Biology Plant 32(4): 272-289.
Hausman, J.F., Kevers, C. & Gaspar, T. 1995. Auxin-polyamine interaction
in the control of the rooting inductive phase of poplar shoots in
vitro. Plant Science 110(1): 63-71.
Htwe, N.N., Maziah, M., Ling, H.C., Zaman, F.Q. & Zain, A.M. 2011.
Responses of some selected Malaysian rice genotypes to callus induction
under in vitro salt stress. African Journal of Biotechnology
10(3): 350-362.
Jansson, S. 1999. A guide
to the Lhc genes and their
relatives in Arabidopsis. Trends in Plant Sciences 4(6):
236-240.
Jansson, S. 1994. The
light-harvesting chlorophyll a/b-binding proteins. Biochimica
et Biophysica Acta
1184(1): 1-19.
Kevers, C., Soteras, G., Baccou, J.C. &
Gaspar, T. 1999. Lignosulfonates: Novel promoting additives for
plant tissue cultures. In Vitro Cellular and Developmental Biology-
Plant 35(5): 413-416.
Lai, K.S. &
Takehisa, M. 2013. Isolation and characterization of Arabidopsis
thaliana self-incompatibility mutant induced by heavy-ion beam
irradiation. Acta Biologica
Cracoviensia Series Botanica 55(2): 146-152.
Lai, K.S., Yusoff,
K. & Mahmood, M. 2012. Heterologous expression of haemagglutinin-neuraminidase protein from Newcastle disease
virus strain AF2240 in Centella
asiatica. Acta Biologica Cracoviensia Series Botanica
54(1): 142-147.
Lai, K.S., Puad, A., Yusoff, K. & Mahmood, M. 2011. An efficient
protocol for particle bombardment-mediated transformation of Centella asiatica.
Acta Physiologiae Plantarum 33: 2547-2552.
Lim, Y.Y. &
Lai, K.S. 2017. Generation of transgenic rice expressing cyclotide
precursor Oldenlandia affinis
kalata B1 protein. Journal of Animal
and Plant Sciences 27(2): 667-671.
Livak, K.J. & Schmittgen, T.D. 2001. Analysis of relative gene expression
data using real-time quantitative PCR and the 2−ΔΔCT
method. Methods 25(4): 402-408.
Martinez-Trujillo,
M., Cabrera-Ponce, J.L. & Herrera-Estrella, L. 2003. Improvement
of rice transformation using bombardment of scutellum-derived calli.
Plant Molecular Biology Reporter 21(4): 429-437.
Mishra, R. &
Rao, G.J.N. 2016. In vitro androgenesis
in rice: Advantages, constraints and future prospects. Rice Science
23(2): 57-68.
Murashige, T. & Skoog,
F. 1962. A revised medium for rapid growth and bio assays with tobacco
tissue cultures. Physiologia
Plantarum 15(3): 473-497.
Park, H.Y., Kim,
S.A., Korlach, J., Rhoades, E., Kwok,
L.W., Zipfel, W.R., Waxham, M.N., Webb,
W.W. & Pollack, L. 2008. Conformational changes of calmodulin
upon Ca2+ binding studied with a microfluidic mixer.
Proceedings of the National Academy of Sciences of the United
States of America 105(2): 542-547.
Raghavendra, G., Kumaraswamy, G.K., Ramya, B., Sandesh,
H.S., Yogendra, K.N., Deepak, N. &
Gowda, P.H.R. 2010. Direct multiple shoot regeneration of indica
rice (Oryza sativa) Var.
‘Rasi’. Asian and Australasian Journal of Plant Science
and Biotechnology 4(1): 71-73.
Rodríguez-Lucena, P., Tomasi, N., Pinton, R., Hernández- Apaolaza,
L., Lucena, J.J. & Cesco,
S. 2009. Evaluation of 59Fe-lignosulfonates complexes as Fe-sources
for plants. Plant and Soil 325(1-2): 53.
Sah, S.K., Kaur, A.,
Kaur, G. & Cheema, G.S. 2014. Genetic transformation of rice:
Problems, progress and prospects. Rice Research 3(1): 132-142.
Sahoo, K.K., Tripathi, A.K., Pareek, A., Sopory, S.K. & Singla- Pareek, S.L. 2011. An improved protocol for efficient transformation
and regeneration of diverse indica
rice cultivars. Plant Methods 7(1): 49.
Schaller, G.E.,
Bishopp, A. & Kieber, J.J. 2015.
The yin-yang of hormones: Cytokinin and
auxin interactions in plant development. The Plant Cell 27(1):
44-63.
Skoog, F. &
Miller, C.O. 1957. Chemical regulation of growth and organ formation
in plant tissues cultured in vitro. Symposia of the Society
for Experimental Biology 11: 118-130.
Su, N., Hu, M.L.,
Wu, D.X., Wu, F.Q., Fei, G.L., Lan, Y.,
Chen, X.L., Shu, X.L., Zhang, X., Guo,
X.P. & Cheng, Z.J. 2012. Disruption of a rice pentatricopeptide
repeat protein causes a seedling-specific albino phenotype and its
utilization to enhance seed purity in hybrid rice production. Plant
Physiology 159(1): 227-238.
Telysheva, G., Lebedeva, G., Dizhbite, T., Zaimenko, N., Grivinya, D. &
Virzina, O. 1997. Novel ligno-silicon
products promoting root system development. In Biology of Root
Formation and Development. Basic Life Sciences 65, edited by
Altman, A. & Waisel, Y. Boston: Springer. pp. 92-93.
Telysheva, G., Lebedeva,
G., Zaimenko, N. & Viesturs,
U. 1992. New lignosilicon fertilizers
and their action on soil biota. International Symposium, Soil
Decontamination using Biological Processes. Karlsruhe: Deutschland.
pp. 525-530.
Tuteja, N. & Mahajan, S. 2007. Calcium signaling
network in plants: An overview. Plant Signaling & Behavior
2(2): 79-85.
van
der Krieken, W., Kok,
C. & Stevens, L. 2004. Compositions Comprising Lignosulfonates
for Crop Protection and Crop Improvement. U.S. Patent Application
10/543: 702.
Visarada, K.B.R.S. & Sarma,
N.P. 2004. Transformation of indica rice
through particle-bombardment: Factors influencing transient expression
and selection. Biologia Plantarum 48(1):
25-31.
Yamashita,
T.T. & Thomas, T. 1996. Method and Composition for Promoting
and Controlling Growth of Plants. U.S. Patent 5,549,729.
Yang,
D., Qiu, X., Zhou, M. & Lou, H. 2007.
Properties of sodium lignosulfonate as dispersant of coal water
slurry. Energy Conversion and Management 48(9): 2433-2438.
Yang,
T. & Poovaiah, B.W. 2008. Calcium/calmodulin-mediated
signal network in plants. Trends in Plant Science 8(10):
505-512.
Yap,
W.S. & Lai, K.S. 2017. Biochemical properties of twelve Malaysia
rice cultivars in relation to yield potential. Asian Journal
of Agricultural Research 11(4): 137-143.
Zuraida, A.R., Zulkifli, A.S., Habibuddin, H. &
Naziah, B. 2012. Regeneration of Malaysian
rice variety MR219 via somatic embryogenesis. Journal of Tropical
Agriculture and Food Science 39(2): 167-177.
*Corresponding
author; email: laikoksong@upm.edu.my
|