Sains Malaysiana 48(1)(2019): 199–208
http://dx.doi.org/10.17576/jsm-2019-4801-23
Applicability
of Iron (III) Trimesic (Fe-BTC) to Enhance Lignin Separation from Pulp and
Paper Wastewater
(Kebolehgunaan
Besi (III) Trimesik (Fe-BTC) untuk Peningkatan
Pemisahan Lignin daripada Air Sisa Pulpa dan Kertas)
BHUCKCHANYA PANGKUMHANG1,2, PANITAN JUTAPORN1,2, KWANNAPAT SORACHOTI3,
PUMMARIN KHAMDAHSAG4,5 & VISANU TANBOONCHUY1,2,5*
1Department of
Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon
Kaen 40002, Thailand
2Research Center for
Environmental and Hazardous Substance Management (EHSM), Khon Kaen University,
Khon Kaen 40002, Thailand
3International
Programs in Hazardous Substance and Environmental Management, Graduate School,
Chulalongkorn University, Bangkok 10330, Thailand
4Environmental
Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
5Research Program on
Development of Appropriate Technologies for Coloring Agent Removal from Textile
Dyeing, Pulp & Paper, Sugar Industries for Sustainable Management Center of
Excellence on Hazardous Substance Management (HSM), Chulalongkorn University,
Bangkok 10330, Thailand
Received:
26 April 2018/Accepted: 29 August 2018
ABSTRACT
This study assesses the application of iron (III) trimesic (Fe-BTC)
as a coagulant-flocculant to remove lignin from pulp and paper (P&P)
wastewater. In this research, Fe-BTC was characterized by X-ray
diffraction (XRD), while the functional groups of Fe-BTC and
lignin were analyzed by Fourier transform infrared (FT-IR)
spectroscopy. Scanning electron microscopy (SEM)
determined the surface morphology of the material. The influential parameters
affecting lignin removal included the initial lignin concentration, the
quantity of Fe-BTC, and the pH which were
investigated using a single batch mixing system. The experimental and optimum
operational conditions were determined using Box-Behnken design (BBD).
Fe-BTC dosage plays a major role in efficiently removing lignin,
while the pH and initial lignin concentration had no significant effect.
Greater than 80% removal efficiency could be achieved with a Fe-BTC dosage
as low as 2 g/L. The proposed mechanism of lignin aggregation was that Fe
molecules were released from unsaturated sites of Fe-BTC and
then formed new bonds with O in the methoxy lignin group. The interaction
between Fe-BTC and lignin was π-π stacking (benzene ring), which
explains the formation of F-O bonds in the lignin sludge.
Keywords: Box-Behnken design; Fe-BTC;
lignin; metal-organic frameworks; MOFs; pulp and paper
ABSTRAK
Kajian ini menilai penggunaan besi (III) trimesik (Fe-BTC)
sebagai bahan penggumpal untuk menyingkirkan lignin daripada air
sisa pulpa dan kertas (P&P). Dalam kajian ini, Fe-BTC dicirikan oleh pembelauan
sinar-x (XRD) manakala kumpulan fungsian Fe-BTC dan
lignin dianalisis melalui spektroskopi transformasi Fourier inframerah
(FT-IR).
Mikroskop Elektron Imbasan (SEM) menentukan morfologi permukaan
untuk bahan. Parameter penting yang menyebabkan penyingkiran lignin
adalah termasuk kepekatan pemula lignin, kuantiti Fe-BTC dan
pH yang dikaji menggunakan sistem campuran kelompok tunggal. Syarat
uji kaji dan pengoperasian optimum telah ditentukan dengan menggunakan
reka bentuk Box-Behnken (BBD). Dos Fe-BTC memainkan peranan penting
dalam menyingkirkan lignin dengan cekap, manakala pH dan kepekatan
pemula lignin tidak menunjukkan kesan yang ketara. Lebih daripada
80% kecekapan penyingkiran boleh dicapai dengan dos Fe-BTC serendah 2 g/L. Mekanisme
cadangan daripada pengagregatan lignin adalah bahawa Fe molekul
dibebaskan dari unsatured tapak Fe-BTC dan kemudian membentuk ikatan baharu
dengan O dalam kumpulan lignin metoksi. Interaksi antara Fe-BTC
dan lignin ialah susunan π-π (gelang benzena)
yang menjelaskan pembentukan ikatan F-O dalam enap-cemar lignin.
Kata kunci: Fe-BTC; lignin; MOFs;
pulpa dan kertas; rangka kerja logam-organik; reka bentuk Box-Behnken
REFERENCES
Ali, M. & Sreekrishnan, T.R. 2001. Aquatic
toxicity from pulp and paper mill effluents: A review. Advances in
Environmental Research 5(2): 175-196.
Andersson, K.I., Eriksson, M. & Norgren, M.
2012. Lignin removal by adsorption to fly ash in wastewater generated by
mechanical pulping. Industrial and Engineering Chemistry Research 51(8):
3444-3451.
Archariyapanyakul, P., Pangkumhang, B.,
Khamdahsag, P. & Tanboonchuy, V. 2017. Synthesis of silica-supported
nanoiron for Cr(VI) removal: Application of Box-Behnken Statistical Design
(BBD). Sains Malaysiana 46(4): 655-665.
Ashrafi, O., Yerushalmi, L. & Haghighat, F.
2015. Wastewater treatment in the pulp-and-paper industry: A review of
treatment processes and the associated greenhouse gas emission. Journal of
Environmental Management 158: 146-157.
Autie-Castro, G., Autie, M.A., Rodríguez-Castellón,
E., Aguirre, C. & Reguera, E. 2015. Cu-BTC and Fe-BTC metal-organic
frameworks: Role of the materials structural features on their performance for
volatile hydrocarbons separation. Colloids and Surfaces A: Physicochemical
and Engineering Aspects 481: 351-357.
Cassey, T.L., Yaser, A., Shazwan, A.S. &
Hairul, M.A. 2014. Current review on the coagulation/flocculation of lignin
containing wastewater. International Journal of Waste Resources 4(03):
2-7.
Ciputra, S., Antony, A., Phillips, R.,
Richardson, D. & Leslie, G. 2010. Comparison of treatment options for
removal of recalcitrant dissolved organic matter from paper mill effluent. Chemosphere 81(1): 86-91.
Deng, Y., Feng, X., Zhou, M., Qian, Y., Yu, H.
& Qiu, X. 2011. Investigation of aggregation and assembly of alkali lignin
using iodine as a probe. Biomacromolecules 12(4): 1116- 1125.
Elwakeel, K.Z. & Guibal, E. 2015. Selective
removal of Hg(II) from aqueous solution by functionalized magnetic-macromolecular
hybrid material. Chemical Engineering Journal 281: 345-359.
Fang, Y., Wen, J., Zeng, G., Jia, F., Zhang, S.,
Peng, Z. & Zhang, H. 2017. Effect of mineralizing agents on the adsorption
performance of metal-organic framework MIL-100(Fe) towards chromium(VI). Chemical
Engineering Journal 337: 532-540.
García, E., Medina, R., Lozano, M., Hernández
Pérez, I., Valero, M. & Franco, A. 2014. Adsorption of azo-dye orange II
from aqueous solutions using a metal-organic framework material:
Iron-benzenetricarboxylate. Materials 7(12): 8037-8057.
Hameed, Y.T., Idris, A., Hussain, S.A.,
Abdullah, N., Man, H.C. & Suja, F. 2018. A tannin-based agent for
coagulation and flocculation of municipal wastewater as a pretreatment for
biofilm process. Journal of Cleaner Production 182: 198-205.
Hao, C., Li, J., He, Q., Zhou, Z., Guo, X.,
Wang, X., Gao, S. & Zhang, Y. 2016. Ultrasonic synthesis and properties of
sodium lignosulfonate-grafted poly(acrylic
acid-co-vinyl alcohol) composite superabsorbent polymer. Australian Journal
of Chemistry 69: 1155-1161.
Hasan, Z. & Jhung, S.H. 2015. Removal of
hazardous organics from water using metal-organic frameworks (MOFs): Plausible
mechanisms for selective adsorptions. Journal of Hazardous Materials 283:
329-339.
Kaur, D., Bhardwaj, N.K. & Lohchab, R.K.
2018. A study on pulping of rice straw and impact of incorporation of chlorine
dioxide during bleaching on pulp properties and effluents characteristics. Journal
of Cleaner Production 170(X): 174-182.
Khan, N.A., Hasan, Z. & Jhung, S.H. 2013.
Adsorptive removal of hazardous materials using metal-organic frameworks
(MOFs): A review. Journal of Hazardous Materials 244- 245: 444-456.
Kiattisaksiri, P., Khamdahsag, P., Khemthong,
P., Pimpha, N. & Grisdanurak, N. 2015. Photocatalytic degradation of
2,4-dichlorophenol over Fe-ZnO catalyst under visible light. Korean Journal
of Chemical Engineering 32: 1578-1585.
Klapiszewski, Ł.,
Siwińska-Stefańska, K. & Kołodyńska, D. 2017a.
Development of lignin based multifunctional hybrid materials for Cu(II) and
Cd(II) removal from the aqueous system. Chemical Engineering Journal 330:
518-530.
Klapiszewski, Ł., Zdarta, J., Antecka, K.,
Synoradzki, K., Siwińska-Stefańska, K., Moszyński, D. &
Jesionowski, T. 2017b. Magnetite nanoparticles conjugated with lignin: A
physicochemical and magnetic study. Applied Surface Science 422: 94-103.
Lee, C.S., Robinson, J. & Chong, M.F. 2014.
A review on application of flocculants in wastewater treatment. Process
Safety and Environmental Protection 92(6): 489-508.
Lee, K.E., Morad, N., Teng, T.T. & Poh, B.T.
2012. Development, characterization and the application of hybrid materials in
coagulation/flocculation of wastewater: A review. Chemical Engineering
Journal 203: 370-386.
Mahmoodi, N.M., Abdi, J., Oveisi, M., Alinia
Asli, M. & Vossoughi, M. 2018. Metal-organic framework (MIL-100 (Fe)):
Synthesis, detailed photocatalytic dye degradation ability in colored textile
wastewater and recycling. Materials Research Bulletin 100: 357-366.
Majano, G., Ingold, O., Yulikov, M., Jeschke, G. & Pérez-
Ramírez, J. 2013. Room-temperature synthesis of Fe– BTC from layered iron
hydroxides: The influence of precursor organisation. CrystEngComm.
http://xlink.rsc. org/?DOI=c3ce41366g.
Moetaz
ElSergany, Amimul Ahsan & Md. Maniruzzaman A. Aziz. 2015. Optimizing the
performance of a paper mill effluent treatment. Sains Malaysiana 44(1):
101-106.
Naseem,
A., Tabasum, S., Zia, K.M., Zuber, M., Ali, M. & Noreen, A. 2016.
Lignin-derivatives based polymers, blends and composites: A review. International
Journal of Biological Macromolecules 93: 296-313.
Norgren,
M. & Edlund, H. 2014. Lignin: Recent advances and emerging applications. Current
Opinion in Colloid and Interface Science 19(5): 409-416.
Nyman,
V., Rose, G. & Ralston, J. 1986. The colloidal behaviour of kraft lignin
and lignosulfonates. Colloids and Surfaces 21: 125-147.
Roopan,
S.M. 2017. An overview of natural renewable bio-polymer lignin towards nano and
biotechnological applications. International Journal of Biological
Macromolecules 103: 508-514.
Sciortino,
L., Alessi, A., Messina, F., Buscarino, G. & Gelardi, F.M. 2015. Structure
of the FeBTC metal-organic framework: A model based on the local environment
study. Journal of Physical Chemistry C 119(14): 7826-7830.
Sorachoti,
K., Pangkumhang, B., Tanboonchuy, V., Tulaphol, S. & Grisdanurak, N. 2017.
Reversible adsorption of metalworking fluids (MWFs) on Cu-BTC metal organic
framework. Chinese Journal of Chemical Engineering 25(6): 768-774.
Sriprom,
P., Neramittagapong, S., Lin, C., Wantala, K., Neramittagapong, A. &
Grisdanurak, N. 2015. Optimizing chemical oxygen demand removal from
synthesized wastewater containing lignin by catalytic wet-air oxidation over
CuO/Al2O3catalysts. Journal of the Air and Waste Management Association 65(7):
828-836.
Teh,
C.Y., Budiman, P.M., Shak, K.P.Y. & Wu, T.Y. 2016. Recent advancement of coagulation-flocculation
and its application in wastewater treatment. Industrial and Engineering
Chemistry Research 55(16): 4363-4389.
Tolod,
K.R., Bajamundi, C.J.E., De Leon, R.L., Sreearunothai, P., Khunphonoi, R. &
Grisdanurak, N. 2016. Visible light-driven photocatalytic hydrogen production
using Cu-doped SrTiO3. Energy Sources, Part A: Recovery, Utilization and
Environmental Effects 38(2): 286-294.
Wang,
X., Wang, Y., Hou, H., Wang, J. & Hao, C. 2017. Ultrasonic method to synthesize
glucan-g-poly(acrylic acid)/sodium lignosulfonate
hydrogels and studies of their adsorption of Cu2+from aqueous solution. ACS
Sustainable Chemistry and Engineering 5(8): 6438-6446.
Wang,
X., Wu, F., Duan, Y., Wang, Y., Hao, C. & Ge, C. 2016. Lignin-assisted
solid-phase synthesis of nano-CuO for a photocatalyst with excellent catalytic
activity and high performance supercapacitor electrodes. RSC Advances 6(70):
65644-65653.
Wang,
X., Zhang, Y., Hao, C., Dai, X., Zhu, F. & Ge, C. 2014. Ultrasonic synthesis
and properties of a sodium lignosulfonate-grafted poly(acrylic
acid-co-acryl amide) composite super absorbent polymer. New Journal of
Chemistry 38(12): 6057-6063.
Wang,
Y., Wang, X., Ding, Y., Zhou, Z., Hao, C. & Zhou, S. 2018. Novel sodium
lignosulphonate assisted synthesis of well dispersed Fe3O4microspheres for
efficient adsorption of copper (II). Powder Technology 325: 597-605.
Wang,
Y., Zhu, L., Wang, X., Zheng, W., Hao, C., Jiang, C. & Wu, J. 2018.
Synthesis of aminated calcium lignosulfonate and its adsorption properties for
azo dyes. Journal of Industrial and Engineering Chemistry 61: 321-330.
Wei,
N., Zhang, Z., Liu, D., Wu, Y., Wang, J. & Wang, Q. 2015. Coagulation
behavior of polyaluminum chloride: Effects of pH and coagulant dosage. Chinese
Journal of Chemical Engineering 23(6): 1041-1046.
Zhan,
X., Gao, B., Yue, Q., Liu, B., Xu, X. & Li, Q. 2010. Removal natural
organic matter by coagulation-adsorption and evaluating the serial effect
through a chlorine decay model. Journal of Hazardous Materials 183(1-3):
279-286.
Zhu,
B., Yu, X., Jia, Y., Peng, F., Sun, B., Zhang, M. & Huang, X. 2012. Iron
and 1,3,5-benzenetricarboxylic metal-organic coordination polymers prepared by
solvothermal method and their application in efficient As(V)
removal from aqueous solutions. The Journal of Physical Chemistry C 116(V):
8601-8607.
*Corresponding
author; email: visanu@kku.ac.th
|