Sains Malaysiana 48(1)(2019): 217–225
http://dx.doi.org/10.17576/jsm-2019-4801-25
Mapping
Lung Cancer Disease in Libya using Standardized Morbidity Ratio, BYM Model and
Mixture Model, 2006 to 2011: Bayesian Epidemiological Study
(Pemetaan
Penyakit Kanser Paru-Paru di Libya menggunakan Nisbah Morbiditi Piawai, Model BYM dan Model Campuran, 2006 hingga 2011:
Kajian Bayesian Epidemiologi)
MARYAM AHMED ALRAMAH1*, NOR AZAH SAMAT2 & ZULKIFLEY MOHAMED2
1Department of Statistics, Faculty of Science, University of Tripoli, Alfernag
Tripoli, Libya
2Faculty of Science
and Mathematics, University Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak,
Malaysia
Received:
17 December 2016/Accepted: 7 February 2018
ABSTRACT
Cancer represents a significant burden on both patients and their
families and their societies, especially in developing countries, including
Libya. Therefore, the aim of this study was to model the geographical
distribution of lung cancer incidence in Libya. The correct choice of a statistical
model is a very important step to producing a good map of disease in question.
Therefore, in this study will use three models to estimate the relative risk
for lung cancer disease, they are initially Standardized Morbidity Ratio, which
is the most common statistic used in disease mapping, BYM model,
and Mixture model. As an initial step, this study begins by providing a review
of all models are proposed, which we then apply to lung cancer data in Libya.
In this paper, we show some preliminary results, which are displayed and
compared by using maps, tables, graphics and goodness-of-fit, the last measure
of displaying the results is common in statistical modelling to compare fitted
models. The main general results presented in this study show that the last two
models, BYM and Mixture have been demonstrated to overcome the
problem of the first model when there no observed lung cancer cases in certain
districts. Also, other results show that Mixture model is most robust and gives
a better relative risk estimate across compared it with a range of models.
Keywords: BYM model; disease mapping; Libya;
lung cancer; mixture model; relative risk; Standardized Morbidity Ratio (SMR)
ABSTRAK
Kanser merupakan beban besar kepada pesakit dan keluarga mereka
serta masyarakat, terutamanya di negara membangun, termasuk Libya. Oleh itu,
tujuan kajian ini dijalankan adalah untuk merangka agihan geografi kejadian
kanser paru-paru di Libya. Pemilihan model statistik yang betul merupakan satu
langkah yang sangat penting untuk menghasilkan satu peta penyakit yang dikaji.
Oleh itu, kajian ini akan menggunakan tiga model untuk menganggar risiko
relatif bagi penyakit kanser paru-paru iaitu nisbah morbiditi piawai yang
merupakan statistik biasa digunakan dalam pemetaan penyakit, model BYM dan
model Campuran. Sebagai langkah pemula, kajian ini bermula dengan penyediaan
ulasan untuk semua model yang dicadangkan, yang kemudiannya kami gunakan untuk
data kanser paru-paru di Libya. Dalam kertas ini, kami tunjukkan beberapa
keputusan awal yang dipapar dan dibandingkan dengan menggunakan peta, jadual,
grafik dan kebagusan penyuaian yang merupakan langkah biasa terakhir untuk
memaparkan keputusan dalam pemodelan statistik untuk membandingkan model
suaian. Keputusan umum utama yang dikemukakan dalam kajian ini menunjukkan
bahawa dua model terakhir, BYM dan Campuran telah menunjukkan
kebolehan mengatasi masalah model pertama apabila tidak terdapat kes kanser
paru-paru diperhatikan di daerah tertentu. Selain itu, keputusan lain juga
menunjukkan bahawa model Campuran paling memberangsangkan dan memberikan
penganggaran risiko relatif lebih baik berbanding model lain.
Kata kunci: Kanser
paru-paru; Libya; model BYM; model Campuran;
nisbah morbiditi dipiawaikan (SMR); pemetaan
penyakit; risiko relatif
REFERENCES
Abusaa, A. 2007. Second Annual Report Hospital-Based
Cancer Registry Introduction and Outline. African Oncology Institute (AOI),
Sabratha, African Oncology Institute (AOI). pp. 1-60.
Akhtar Shad, M.A., Abu Bakr, S.A., Dawi, & Huq, I.U.
1993. Cancer in Libya - A retrospective study (1981-1985). African Journal
of Medicine and Medical Sciences 22(1): 17-24.
Alhdiri, M.A., Samat, N.A. & Zulkifley, M. 2016. Mapping
Libya’s prostate cancer based on the SMR method: A geographical analysis. Geografia
Malaysian Journal of Society and Space 12(9): 118-125.
Alsaker, M.H. 2013. Natural human factors plays in the
incidence of malignant tumors in the north - west of Libya. PhD Thesis,
Department of Geography, University of Tripoli (Unpublished).
Bell, B.S., Hoskins, R.E., Pickle, L.W. & Wartenberg, D.
2006. Current practices in spatial analysis of cancer data: Mapping health
statistics to inform policymakers and the public. International Journal of
Health Geographics 5(1): 49.
Besag, J., York, J. & Mollie, A. 1991. Bayesian image
restoration with two applications in spatial statistics. Annals of the
Institute of Statistical Mathematics 43: 1-59.
Bodalal, Z., Raouf, A. & Riyad, B. 2014. Cancers in
Eastern Libya: First results from Benghazi Medical Center. World Journal of
Gastroenterology 20(20): 6293-6301.
Clayton, D.G. & Kaldor, J. 1987. Empirical Bayes
estimates of age-standardised relative risks for use in disease mapping. Biometrics 43: 671-691.
Ermiah, E., Fathi, A., Abdelbaset, B., Entesar, L., Seppo,
P. & Yrjö, C. 2012. Diagnosis delay in Libyan female breast cancer. BMC
Research Notes 5: 452.
Ferlay, J., Hai, R.S., Freddie, B., David, F., Colin, M.
& Donald, M.P. 2010. Estimates of worldwide burden of cancer in 2008:
GLOBOCAN 2008. International Journal of Cancer 127(12): 2893-2917.
Information and Documentation Center. 2011. Libyan National
Statistics Figures: Annual Statistical Report (in Arabic). Ministry of Health,
Tripoli. (in Arabic). pp. 1-113.
John, R. & Hana, R. 2010. The Global Economic Cost of
Cancer. Atlanta: American Cancer Society and Livestrong. pp. 1-14.
Lawson, A.B. 2013. Bayesian Disease Mapping: Hierarchical
Modeling in Spatial Epidemiology. 2nd ed. Boca Raton: Chapman and Hall/CRC.
Lawson, A.B. 2006. Statistical Methods in Spatial
Epidemiology. England: Wiley.
Lawson, A.B. & Clark, A. 2002. Spatial mixture relative
risk models applied to disease mapping. Statistics in Medicine 21:
359-370.
Lawson, A.B., Browne, A.B. & Vidal Rodeiro, C.L. 2003.
Disease mapping with Win BUGS and MLwiN. England: John Wiley & Sons.
Lawson, A.B., Biggeri, A.B., Boehning, D., Lesare, E., Viel,
J.F., Clark, A., Schlattmann, P. & Divino. 2000. Disease mapping models: An
empirical evaluation. Statistics in Medicine 19: 2217-2241.
Meza, J.L. 2003. Empirical Bayes estimation smoothing of
relative risks in disease mapping. Journal of Statistical Planning and
Inference 112(1-2): 43-62.
Salim, E.I., Abdul Rahman, J. & Malcolm, A.M. 2011. Lung
cancer incidence in the Arab league countries: Risk factors and control. Asian
Pacific Journal of Cancer Prevention 12(1): 17-34.
Samat, N.A. & Percy, D.F. 2008. Standardized mortality
and morbidity ratios and their application to dengue disease mapping in
Malaysia. Proceedings of the Salford Postgraduate Annual Research Conference.
Manchester: Salford University. pp. 200-210.
Siegel, R., Elizabeth, W., Otis, B. & Ahmed, J. 2011.
Cancer statistics 2011: The impact of eliminating socioeconomic and racial
disparities on premature cancer deaths. CA Cancer J. Clin. 61: 212-236.
Spiegelhalter, D.J., Best, N.G., Carlin, B.P. & Av Der.
2002. Bayesian measures of model complexity and fit (with discussion). Journal
of the Royal Statistical Society: Series B 64: 583-640.
Washington, D.C. 2007. Food, Nutrition, Physical
Activity, and the Prevention of Cancer: A Global Perspective/World Cancer
Research Fund. American Institute for Cancer Research. American Institute
for Cancer Research.
*Corresponding author; email:
m.alhdiri@yahoo.com
|