Sains Malaysiana 48(1)(2019): 227–235

http://dx.doi.org/10.17576/jsm-2019-4801-26

 

Bayesian Inference for Linear Regression under Alpha-Skew-Normal Prior

(Pentaabiran Bayesian untuk Model Regresi Linear Prior Normal-Pencong-Alfa)

 

ALHAMIDE, A.A.1, KAMARULZAMAN IBRAHIM2, ALODAT, M.T.1 & WAN ZAWIAH WAN ZIN2*

 

1Department of Mathematics, Statistics and Physics, Qatar University, Qatar

 

2Pusat Pengajian Sains Matematik, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 5 September 2017/Accepted: 3 August 2018

 

ABSTRACT

A study on Bayesian inference for the linear regression model is carried out in the case when the prior distribution for the regression parameters is assumed to follow the alpha-skew-normal distribution. The posterior distribution and its associated full conditional distributions are derived. Then, the Bayesian point estimates and credible intervals for the regression parameters are determined based on a simulation study using the Markov chain Monte Carlo method. The parameter estimates and intervals obtained are compared with their counterparts when the prior distributions are assumed either normal or non-informative. In addition, the findings are applied to Scottish hills races data. It appears that when the data are skewed, the alpha-skew-normal prior contributes to a more precise estimate of the regression parameters as opposed to the other two priors.

 

Keywords: Alpha skew normal distribution; Bayesian linear regression model; simulation

 

ABSTRAK

Suatu kajian tentang pentaabiran Bayesian untuk model regresi dijalankan untuk kes taburan prior bagi parameter regresi yang diandaikan mengikuti taburan normal-pencong-alfa. Taburan posterior dan taburan bersyarat penuh yang berkaitan diterbitkan. Seterusnya, anggaran titik dan selang boleh percaya Bayesian ditentukan berdasarkan satu kajian simulasi menggunakan kaedah rantai Markov Monte Carlo. Anggaran titik dan selang yang diperoleh dibandingkan dengan keputusan apabila taburan diandaikan normal dan tak bermaklumat. Di samping itu, penemuan ini digunakan untuk data perlumbaan bukit Scottish. Kajian ini mendapati bahawa dalam kes data pencong, penganggaran parameter adalah lebih tepat apabila prior normal-pencong-alfa diandaikan berbanding prior normal dan tak bermaklumat.

 

Kata kunci: Model regresi linear Bayesian; simulasi; taburan normal-pencong-alfa

REFERENCES

Alhamide, A., Ibrahim, K. & Alodat, M. 2016. Inference for multiple linear regression model with extended skew normal errors. Pakistan Journal for Statistics 32(2): 81-96.

Alodat, M. & Al-Momani, E. 2014. Skew Gaussian process for nonlinear regression. Communications in Statistics-Theory and Methods 43(23): 4936-4961.

Alodat, M., Al-Salman, S. & Al-Rawwash, M. 2014. A unified weighted family of distributions which contains the skew-elliptical family. Probability and Mathematical Statistics- Poland 34(2): 215-235.

Arellano-Valle, R. & Azzalini, A. 2006. On the unification of families of skew-normal distributions. Scandinavian Journal of Statistics 33(3): 561-574.

Azzalini, A. & Capitanio, A. 2014. The Skew-Normal and Related Families. 3rd ed. New York: Cambridge University Press.

Arellano-Valle, R., Bolfarine, H. & Lachos, V. 2005. Skew-normal linear mixed models. Journal of Data Science 3(4): 415-438.

Berger, J.O., Pericchi, L.R., Ghosh, J., Samanta, T., De Santis, F., Berger, J. & Pericchi, L. 2001. Objective Bayesian methods for model selection: Introduction and comparison. Lecture Notes-Monograph Series 38: 135-207.

Chatterjee, S. & Hadi, A.S. 2012. Regression Analysis by Example. 5th ed. Hoboken, New Jersey: John Wiley & Sons.

Elal-Olivero, D. 2010. Alpha-skew-normal distribution. Proyecciones (Antofagasta) 29(3): 224-240.

Gelman, A., Carlin, J.B., Stern, H.S. & Rubin, D.B. 2014. Bayesian Data Analysis. 3rd ed. Boca Raton: Chapman & Hall/CRC.

Genton, M.G. 2004. Skew-elliptical Distributions and Their Applications: A Journey Beyond Normality. Boca Raton: CRC Press.

Hoff, P.D. 2009. A First Course in Bayesian Statistical Methods: New York: Springer Science & Business Media.

Robert, C. & Casella, G. 2010. Introducing Monte Carlo Methods with R. New York: Springer Science & Business Media.

Spiegelhalter, D.J., Best, N.G., Carlin, B.P. & Van Der Linde, A. 2002. Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64(4): 583-639.

 

*Corresponding author; email: w_zawiah@ukm.edu.my

 

 

 

previous