Sains Malaysiana 48(1)(2019): 227–235
http://dx.doi.org/10.17576/jsm-2019-4801-26
Bayesian
Inference for Linear Regression under Alpha-Skew-Normal Prior
(Pentaabiran
Bayesian untuk Model Regresi Linear Prior Normal-Pencong-Alfa)
ALHAMIDE, A.A.1, KAMARULZAMAN IBRAHIM2, ALODAT, M.T.1 & WAN ZAWIAH WAN ZIN2*
1Department of
Mathematics, Statistics and Physics, Qatar University, Qatar
2Pusat Pengajian Sains
Matematik, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 5 September 2017/Accepted: 3 August 2018
ABSTRACT
A study on Bayesian inference for the linear regression model is
carried out in the case when the prior distribution for the regression
parameters is assumed to follow the alpha-skew-normal distribution. The
posterior distribution and its associated full conditional distributions are
derived. Then, the Bayesian point estimates and credible intervals for the
regression parameters are determined based on a simulation study using the
Markov chain Monte Carlo method. The parameter estimates and intervals obtained
are compared with their counterparts when the prior distributions are assumed
either normal or non-informative. In addition, the findings are applied to
Scottish hills races data. It appears that when the data are skewed, the
alpha-skew-normal prior contributes to a more precise estimate of the
regression parameters as opposed to the other two priors.
Keywords: Alpha skew normal distribution; Bayesian linear regression
model; simulation
ABSTRAK
Suatu kajian tentang pentaabiran Bayesian untuk model regresi
dijalankan untuk kes taburan prior bagi parameter regresi yang diandaikan
mengikuti taburan normal-pencong-alfa. Taburan posterior dan taburan bersyarat
penuh yang berkaitan diterbitkan. Seterusnya, anggaran titik dan selang boleh
percaya Bayesian ditentukan berdasarkan satu kajian simulasi menggunakan kaedah
rantai Markov Monte Carlo. Anggaran titik dan selang yang diperoleh
dibandingkan dengan keputusan apabila taburan diandaikan normal dan tak
bermaklumat. Di samping itu, penemuan ini digunakan untuk data perlumbaan bukit
Scottish. Kajian ini mendapati bahawa dalam kes data pencong, penganggaran
parameter adalah lebih tepat apabila prior normal-pencong-alfa diandaikan
berbanding prior normal dan tak bermaklumat.
Kata kunci: Model regresi
linear Bayesian; simulasi; taburan normal-pencong-alfa
REFERENCES
Alhamide, A., Ibrahim, K. & Alodat, M. 2016. Inference
for multiple linear regression model with extended skew normal errors. Pakistan Journal for Statistics
32(2): 81-96.
Alodat, M. & Al-Momani, E. 2014. Skew Gaussian process
for nonlinear regression. Communications in Statistics-Theory and Methods 43(23):
4936-4961.
Alodat, M., Al-Salman, S. & Al-Rawwash, M. 2014. A
unified weighted family of distributions which contains the skew-elliptical
family. Probability and Mathematical Statistics- Poland 34(2): 215-235.
Arellano-Valle, R. & Azzalini, A. 2006. On the
unification of families of skew-normal distributions. Scandinavian Journal
of Statistics 33(3): 561-574.
Azzalini, A. & Capitanio, A. 2014. The Skew-Normal
and Related Families. 3rd ed. New York: Cambridge University Press.
Arellano-Valle, R., Bolfarine, H. & Lachos, V. 2005.
Skew-normal linear mixed models. Journal of Data Science 3(4): 415-438.
Berger, J.O., Pericchi, L.R., Ghosh, J., Samanta, T., De
Santis, F., Berger, J. & Pericchi, L. 2001. Objective Bayesian methods for
model selection: Introduction and comparison. Lecture Notes-Monograph Series 38: 135-207.
Chatterjee, S. & Hadi, A.S. 2012. Regression Analysis
by Example. 5th ed. Hoboken, New Jersey: John Wiley & Sons.
Elal-Olivero, D. 2010. Alpha-skew-normal distribution. Proyecciones
(Antofagasta) 29(3): 224-240.
Gelman, A., Carlin, J.B., Stern, H.S. & Rubin, D.B.
2014. Bayesian Data Analysis. 3rd ed. Boca Raton: Chapman &
Hall/CRC.
Genton, M.G. 2004. Skew-elliptical Distributions and
Their Applications: A Journey Beyond Normality. Boca Raton: CRC Press.
Hoff, P.D. 2009. A First Course in Bayesian Statistical
Methods: New York: Springer Science & Business Media.
Robert, C. & Casella, G. 2010. Introducing Monte
Carlo Methods with R. New York: Springer Science & Business Media.
Spiegelhalter, D.J., Best, N.G., Carlin, B.P. & Van Der
Linde, A. 2002. Bayesian measures of model complexity and fit. Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 64(4):
583-639.
*Corresponding
author; email: w_zawiah@ukm.edu.my