Sains Malaysiana 48(1)(2019): 251–257
http://dx.doi.org/10.17576/jsm-2019-4801-29
Solving
Fractional Fredholm Integro-Differential Equations by Laguerre Polynomials
(Penyelesaian
Pecahan Persamaan Pembezaan-Kamiran Fredholm menggunakan Polinomial Laguerre)
AYŞEGÜL DAŞCIOĞLU
& DİLEK VAROL BAYRAM*
Department of Mathematics, Faculty of Science and Arts, Pamukkale
University, Denizli, 20070, Turkey
Received: 16 February 2018/Accepted: 13 September 2018
ABSTRACT
The main purpose of this study was to present an approximation
method based on the Laguerre polynomials to obtain the solutions of the
fractional linear Fredholm integro-differential equations. This method
transforms the integro-differential equation to a system of linear algebraic
equations by using the collocation points. In addition, the matrix relation for
Caputo fractional derivative of Laguerre polynomials is also obtained. Besides,
some examples are presented to illustrate the accuracy of the method and the
results are discussed.
Keywords: Fractional integro-differential equations; Fredholm
integro-differential equations; Laguerre polynomials
ABSTRAK
Tujuan utama kajian ini adalah untuk mengemukakan kaedah
penghampiran berdasarkan polinomial Laguerre untuk mendapatkan penyelesaian
pecahan linear persamaan pembezaan-kamiran Fredholm. Kaedah ini menjelmakan
persamaan pembezaan-kamiran ke sistem persamaan aljabar linear dengan
menggunakan titik-titik kolokasi. Di samping itu, hubungan matriks untuk terbitan
pecahan Caputo polinomial Laguerre juga diperoleh. Selain itu, beberapa contoh
dibentangkan untuk menggambarkan ketepatan kaedah dan hasilnya dibincangkan.
Kata kunci: Persamaan
pembezaan-kamiran Fredholm; persamaan pembezaan-kamiran pecahan; polinomial
Laguerre
REFERENCES
Abbas, S., Benchohra, M. & N’Guerekata, G.M.
2015. Advanced Fractional Differential and Integral Equations. New York:
Nova Science Publishers.
Al-Jamal, M.F. & Rawashdeh, E.A. 2009. The
approximate solution of fractional ?ntegro-differential equations. International
Journal of Contemporary Mathematical Sciences 4(22): 1067-1078.
Alkan, S. & Hatipoglu, V.F. 2017.
Approximate solutions of Volterra-Fredholm integro-differential equations of
fractional order. Tbilisi Mathematical Journal 10(2): 1-13.
Al-Zubaidy, K.A. 2013. A numerical solution of parabolic-type
volterra partial ?ntegro-differential equations by Laguerre collocation method. International Journal for Sciences and Technology 8(4): 51-55.
Baykus Savasaneril, N. & Sezer, M.
2016. Laguerre polynomial solution of high-order linear Fredholm
integro-differential equations. New Trends in Mathematical Sciences 4(2):
273-284.
Bell, W.W. 1968. Special Functions for Scientists and
Engineers. London: D. Van Nostrand Company.
Bushnaq, S., Maayah, B. & Ahmad, M. 2016. Reproducing
kernel Hilbert space method for solving Fredholm integro-differential equations
of fractional order. Italian Journal of Pure and Applied Mathematics 36:
307-318.
Dzhumabaev, D.S. 2018. New general solutions to linear
Fredholm integro-differential equations and their applications on solving the
boundary value problems. Journal of Computational and Applied Mathematics 327:
79-108.
Elbeleze, A.A., K?l?çman, A. & Taib, M.T. 2016. Modified
homotopy perturbation method for solving linear second-order Fredholm
integro-differential equations. Filomat 30(7): 1823-1831.
Emiroglu, I. 2015. An approximation method for fractional
integro-differential equations. Open Physics 13: 370-376.
Fairbairn, A.I. & Kelmanson, M.A. 2018. Error analysis
of a spectrally accurate Volterra-transformation method for solving 1-D
Fredholm integro-differential equations. International Journal of Mechanical
Sciences 144: 382-391.
Gülsu, M., Öztürk, Y. & Anapal?, A. 2013. Numerical
approach for solving fractional Fredholm integro-differential equation. International
Journal of Computer Mathematics 90(7): 1413-1434.
Gürbüz, B. & Sezer, M. 2017a. A numerical solution of
parabolic-type Volterra partial integro-differential equations by Laguerre
collocation method. International Journal of Applied Physics and Mathematics 7(1): 49-58.
Gürbüz, B. & Sezer, M. 2017b. A new computational method
based on Laguerre polynomials for solving certain nonlinear partial integro
differential equations. Acta Physica Polonica A 132(3): 561-563.
Gürbüz, B. & Sezer, M. 2017c. Laguerre polynomial
solutions of a class of delay partial functional differential equations. Acta
Physica Polonica A 132(3): 558-560.
Gürbüz, B., Sezer, M. & Güler, C. 2014. Laguerre collocation
method for solving Fredholm integro-differential equations with functional
arguments. Journal of Applied Mathematics 2014: 682398.
Hamoud, A.A. & Ghadle, K.P. 2018a. The approximate
solutions of fractional Volterra-Fredholm integro-differential equations by
using analytical techniques. Problemy Analiza Issues of Analysis 7(25):
41-58.
Hamoud, A.A. & Ghadle, K.P. 2018b. Modified Laplace
decomposition method for fractional Volterra-Fredholm integro-differential
equations. Journal of Mathematical Modeling 6(1): 91-104.
Hendi, F.A. & Al-Qarni, M.M. 2017. The variational
Adomian decomposition method for solving nonlinear two- dimensional
Volterra-Fredholm integro-differential equation. Journal of King Saud
University - Science 31(1): 110-113.
Herrman, R. 2014. Fractional Calculus. Singapore:
World Scientific.
Ibrahim, R.W., Qasem, S.A. & Siri, Z. 2015. Existence
results for a family of equations of fractional resolvent. Sains Malaysiana 44(2):
295-300.
Kobayashi, R., Konuma, M. & Kumano, S. 1995. FORTRAN
program for a numerical solution of the nonsinglet Altarelli- Parisi equation. Computer
Physics Communications 86: 264-278.
Kumar, K., Pandey, R.K. & Sharma, S. 2017. Comparative
study of three numerical schemes for fractional integro-differential equations. Journal of Computational and Applied Mathematics 315: 287-302.
Kürkçü, Ö.K., Aslan, E. & Sezer, M. 2017. A novel
collocation method based on residual error analysis for solving
integro-differential equations using Hybrid Dickson and Taylor polynomials. Sains
Malaysiana 46(2): 335-347.
Lebedev, N.N. 1972. Special Functions and Their
Applications. New York: Dover Publications.
Ma, X. & Huang, C. 2014. Spectral collocation method for
linear fractional integro-differential equations. Applied Mathematical
Modelling 38: 1434-1448.
Mahdy, A.M.S. & Shwayyea, R.T. 2016. Numerical solution
of fractional integro-differential equations by least squares method and
shifted Laguerre polynomials pseudo-spectral method. International Journal
of Scientific & Engineering Research 7(4): 1589-1596.
Mahdy, A.M.S., Mohamed, E.M.H. & Marai, G.M.A. 2016.
Numerical solution of fractional integro-differential equations by least
squares method and shifted Chebyshev polynomials of the third kind method. Theoretical
Mathematics & Applications 6(4): 87-101.
Mohammed, D.Sh. 2014. Numerical solution of fractional
integro-differential equations by least squares method and shifted Chebyshev
polynomial. Mathematical Problems in Engineering 2014: 431965.
Nemati, S., Sedaghat, S. & Mohammadi, I. 2016. A fast
numerical algorithm based on the second kind Chebyshev polynomials for
fractional integro-differential equations with weakly singular kernels. Journal
of Computational and Applied Mathematics 308: 231-242.
Ordokhani, Y. & Dehestani, H. 2016. Numerical solution
of linear Fredholm-Volterra integro-differential equations of fractional order. World Journal of Modelling and Simulation 12(3): 204-216.
Oyedepo, T., Taiwo, O.A., Abubakar, J.U. & Ogunwobi,
Z.O. 2016. Numerical studies for solving fractional integro-differential
equations by using least squares method and Bernstein polynomials. Fluid
Mechanics: Open Access 3(3): 1000142.
Parand, K. & Nikarya, M. 2014. Application of Bessel
functions for solving differential and integro-differential equations of the
fractional order. Applied Mathematical Modelling 38: 4137-4147.
Pedas, A., Tamme, E. & Vikerpuur, M. 2016. Spline
collocation for fractional weakly singular integro-differential equations. Applied
Numerical Mathematics 110: 204-214.
Podlubny, I. 1999. Fractional Differential Equations.
USA: Academic Press.
Rahimkhani, P., Ordokhani, Y. & Babolian E. 2017.
Fractional-order Bernoulli functions and their applications in solving
fractional Fredholem-Volterra integro-differential equations. Applied
Numerical Mathematics 122: 66-81.
Rohaninasab,
N., Maleknejad, K. & Ezzati, R. 2018. Numerical solution of high-order
Volterra-Fredholm integro-differential equations by using Legendre collocation
method. Applied Mathematics and Computation 328: 171-188.
Schoeffel, L. 1999. An
elegant and fast method to solve QCD evolution equations. Application to the
determination of the gluon content of the Pomeron. Nuclear Instruments and
Methods in Physics Research A 423: 439-445.
Setia, A., Liu, Y. & Vatsala, A.S. 2014. Solution of
linear fractional Fredholm integrodifferential
equation by using second kind Chebyshev wavelet. 11th
International Conference on Information Technology: New Generations.
Shahooth, M.K., Ahmad, R.R., Din, U.K.S., Swidan, W., Al-
Husseini, O.K. & Shahooth, W.K. 2016. Approximation solution to solving
linear Volterra-Fredholm integro-differential equations of the second kind by
using Bernstein polynomials method. Journal of Applied & Computational
Mathematics 5(2): 1000298.
Syam, M.I. 2017. Analytical solution of the fractional
Fredholm integrodifferential equation using the fractional residual power
series method. Complexity 2017: 4573589.
Tang, X. & Xu, H. 2016. Fractional pseudospectral
integration matrices for solving fractional differential, integral and
integro-differential equations. Communications in Nonlinear Science and
Numerical Simulation 30: 248-267.
Turmetov, B. & Abdullaev, J. 2017. Analytic solutions of
fractional integro-differential equations of Volterra type. IOP Conference
Series, Journal of Physics: Conference Series 890: 012113.
Wang, Y. & Zhu, L. 2016. SCW method for solving the
fractional integro-differential equations with a weakly singular kernel. Applied
Mathematics and Computation 275: 72-80.
Yi, M., Wang, L. & Huang, J. 2016. Legendre wavelets
method for the numerical solution of fractional integro-differential equations
with weakly singular kernel. Applied Mathematical Modelling 40:
3422-3437.
Yüzbaş?, Ş. 2014. Laguerre approach for solving
pantograph-type Volterra integro-differential equations. Applied Mathematics
and Computation 232: 1183-1199.
Yüzbaş?, Ş. & Karaçay?r, M. 2017. A
Galerkin-like scheme to solve two-dimensional telegraph equation using collocation
points in initial and boundary conditions. Computers and Mathematics with
Applications 74: 3242-3249.
*Corresponding
author; email: dvarol@pau.edu.tr