Sains Malaysiana 48(1)(2019): 251–257

http://dx.doi.org/10.17576/jsm-2019-4801-29

 

Solving Fractional Fredholm Integro-Differential Equations by Laguerre Polynomials

(Penyelesaian Pecahan Persamaan Pembezaan-Kamiran Fredholm menggunakan Polinomial Laguerre)

 

AYŞEGÜL DAŞCIOĞLU & DİLEK VAROL BAYRAM*

 

Department of Mathematics, Faculty of Science and Arts, Pamukkale University, Denizli, 20070, Turkey

 

Received: 16 February 2018/Accepted: 13 September 2018

 

ABSTRACT

The main purpose of this study was to present an approximation method based on the Laguerre polynomials to obtain the solutions of the fractional linear Fredholm integro-differential equations. This method transforms the integro-differential equation to a system of linear algebraic equations by using the collocation points. In addition, the matrix relation for Caputo fractional derivative of Laguerre polynomials is also obtained. Besides, some examples are presented to illustrate the accuracy of the method and the results are discussed.

 

Keywords: Fractional integro-differential equations; Fredholm integro-differential equations; Laguerre polynomials

 

ABSTRAK

Tujuan utama kajian ini adalah untuk mengemukakan kaedah penghampiran berdasarkan polinomial Laguerre untuk mendapatkan penyelesaian pecahan linear persamaan pembezaan-kamiran Fredholm. Kaedah ini menjelmakan persamaan pembezaan-kamiran ke sistem persamaan aljabar linear dengan menggunakan titik-titik kolokasi. Di samping itu, hubungan matriks untuk terbitan pecahan Caputo polinomial Laguerre juga diperoleh. Selain itu, beberapa contoh dibentangkan untuk menggambarkan ketepatan kaedah dan hasilnya dibincangkan.

 

Kata kunci: Persamaan pembezaan-kamiran Fredholm; persamaan pembezaan-kamiran pecahan; polinomial Laguerre

REFERENCES

Abbas, S., Benchohra, M. & N’Guerekata, G.M. 2015. Advanced Fractional Differential and Integral Equations. New York: Nova Science Publishers.

Al-Jamal, M.F. & Rawashdeh, E.A. 2009. The approximate solution of fractional ?ntegro-differential equations. International Journal of Contemporary Mathematical Sciences 4(22): 1067-1078.

Alkan, S. & Hatipoglu, V.F. 2017. Approximate solutions of Volterra-Fredholm integro-differential equations of fractional order. Tbilisi Mathematical Journal 10(2): 1-13.

Al-Zubaidy, K.A. 2013. A numerical solution of parabolic-type volterra partial ?ntegro-differential equations by Laguerre collocation method. International Journal for Sciences and Technology 8(4): 51-55.

 Baykus Savasaneril, N. & Sezer, M. 2016. Laguerre polynomial solution of high-order linear Fredholm integro-differential equations. New Trends in Mathematical Sciences 4(2): 273-284.

Bell, W.W. 1968. Special Functions for Scientists and Engineers. London: D. Van Nostrand Company.

Bushnaq, S., Maayah, B. & Ahmad, M. 2016. Reproducing kernel Hilbert space method for solving Fredholm integro-differential equations of fractional order. Italian Journal of Pure and Applied Mathematics 36: 307-318.

Dzhumabaev, D.S. 2018. New general solutions to linear Fredholm integro-differential equations and their applications on solving the boundary value problems. Journal of Computational and Applied Mathematics 327: 79-108.

Elbeleze, A.A., K?l?çman, A. & Taib, M.T. 2016. Modified homotopy perturbation method for solving linear second-order Fredholm integro-differential equations. Filomat 30(7): 1823-1831.

Emiroglu, I. 2015. An approximation method for fractional integro-differential equations. Open Physics 13: 370-376.

Fairbairn, A.I. & Kelmanson, M.A. 2018. Error analysis of a spectrally accurate Volterra-transformation method for solving 1-D Fredholm integro-differential equations. International Journal of Mechanical Sciences 144: 382-391.

Gülsu, M., Öztürk, Y. & Anapal?, A. 2013. Numerical approach for solving fractional Fredholm integro-differential equation. International Journal of Computer Mathematics 90(7): 1413-1434.

Gürbüz, B. & Sezer, M. 2017a. A numerical solution of parabolic-type Volterra partial integro-differential equations by Laguerre collocation method. International Journal of Applied Physics and Mathematics 7(1): 49-58.

Gürbüz, B. & Sezer, M. 2017b. A new computational method based on Laguerre polynomials for solving certain nonlinear partial integro differential equations. Acta Physica Polonica A 132(3): 561-563.

Gürbüz, B. & Sezer, M. 2017c. Laguerre polynomial solutions of a class of delay partial functional differential equations. Acta Physica Polonica A 132(3): 558-560.

Gürbüz, B., Sezer, M. & Güler, C. 2014. Laguerre collocation method for solving Fredholm integro-differential equations with functional arguments. Journal of Applied Mathematics 2014: 682398.

Hamoud, A.A. & Ghadle, K.P. 2018a. The approximate solutions of fractional Volterra-Fredholm integro-differential equations by using analytical techniques. Problemy Analiza Issues of Analysis 7(25): 41-58.

Hamoud, A.A. & Ghadle, K.P. 2018b. Modified Laplace decomposition method for fractional Volterra-Fredholm integro-differential equations. Journal of Mathematical Modeling 6(1): 91-104.

Hendi, F.A. & Al-Qarni, M.M. 2017. The variational Adomian decomposition method for solving nonlinear two- dimensional Volterra-Fredholm integro-differential equation. Journal of King Saud University - Science 31(1): 110-113.

Herrman, R. 2014. Fractional Calculus. Singapore: World Scientific.

Ibrahim, R.W., Qasem, S.A. & Siri, Z. 2015. Existence results for a family of equations of fractional resolvent. Sains Malaysiana 44(2): 295-300.

Kobayashi, R., Konuma, M. & Kumano, S. 1995. FORTRAN program for a numerical solution of the nonsinglet Altarelli- Parisi equation. Computer Physics Communications 86: 264-278.

Kumar, K., Pandey, R.K. & Sharma, S. 2017. Comparative study of three numerical schemes for fractional integro-differential equations. Journal of Computational and Applied Mathematics 315: 287-302.

Kürkçü, Ö.K., Aslan, E. & Sezer, M. 2017. A novel collocation method based on residual error analysis for solving integro-differential equations using Hybrid Dickson and Taylor polynomials. Sains Malaysiana 46(2): 335-347.

Lebedev, N.N. 1972. Special Functions and Their Applications. New York: Dover Publications.

Ma, X. & Huang, C. 2014. Spectral collocation method for linear fractional integro-differential equations. Applied Mathematical Modelling 38: 1434-1448.

Mahdy, A.M.S. & Shwayyea, R.T. 2016. Numerical solution of fractional integro-differential equations by least squares method and shifted Laguerre polynomials pseudo-spectral method. International Journal of Scientific & Engineering Research 7(4): 1589-1596.

Mahdy, A.M.S., Mohamed, E.M.H. & Marai, G.M.A. 2016. Numerical solution of fractional integro-differential equations by least squares method and shifted Chebyshev polynomials of the third kind method. Theoretical Mathematics & Applications 6(4): 87-101.

Mohammed, D.Sh. 2014. Numerical solution of fractional integro-differential equations by least squares method and shifted Chebyshev polynomial. Mathematical Problems in Engineering 2014: 431965.

Nemati, S., Sedaghat, S. & Mohammadi, I. 2016. A fast numerical algorithm based on the second kind Chebyshev polynomials for fractional integro-differential equations with weakly singular kernels. Journal of Computational and Applied Mathematics 308: 231-242.

Ordokhani, Y. & Dehestani, H. 2016. Numerical solution of linear Fredholm-Volterra integro-differential equations of fractional order. World Journal of Modelling and Simulation 12(3): 204-216.

Oyedepo, T., Taiwo, O.A., Abubakar, J.U. & Ogunwobi, Z.O. 2016. Numerical studies for solving fractional integro-differential equations by using least squares method and Bernstein polynomials. Fluid Mechanics: Open Access 3(3): 1000142.

Parand, K. & Nikarya, M. 2014. Application of Bessel functions for solving differential and integro-differential equations of the fractional order. Applied Mathematical Modelling 38: 4137-4147.

Pedas, A., Tamme, E. & Vikerpuur, M. 2016. Spline collocation for fractional weakly singular integro-differential equations. Applied Numerical Mathematics 110: 204-214.

Podlubny, I. 1999. Fractional Differential Equations. USA: Academic Press.

Rahimkhani, P., Ordokhani, Y. & Babolian E. 2017. Fractional-order Bernoulli functions and their applications in solving fractional Fredholem-Volterra integro-differential equations. Applied Numerical Mathematics 122: 66-81.

Rohaninasab, N., Maleknejad, K. & Ezzati, R. 2018. Numerical solution of high-order Volterra-Fredholm integro-differential equations by using Legendre collocation method. Applied Mathematics and Computation 328: 171-188.

Schoeffel, L. 1999. An elegant and fast method to solve QCD evolution equations. Application to the determination of the gluon content of the Pomeron. Nuclear Instruments and Methods in Physics Research A 423: 439-445.

Setia, A., Liu, Y. & Vatsala, A.S. 2014. Solution of linear fractional Fredholm integrodifferential

equation by using second kind Chebyshev wavelet. 11th International Conference on Information Technology: New Generations.

Shahooth, M.K., Ahmad, R.R., Din, U.K.S., Swidan, W., Al- Husseini, O.K. & Shahooth, W.K. 2016. Approximation solution to solving linear Volterra-Fredholm integro-differential equations of the second kind by using Bernstein polynomials method. Journal of Applied & Computational Mathematics 5(2): 1000298.

Syam, M.I. 2017. Analytical solution of the fractional Fredholm integrodifferential equation using the fractional residual power series method. Complexity 2017: 4573589.

Tang, X. & Xu, H. 2016. Fractional pseudospectral integration matrices for solving fractional differential, integral and integro-differential equations. Communications in Nonlinear Science and Numerical Simulation 30: 248-267.

Turmetov, B. & Abdullaev, J. 2017. Analytic solutions of fractional integro-differential equations of Volterra type. IOP Conference Series, Journal of Physics: Conference Series 890: 012113.

Wang, Y. & Zhu, L. 2016. SCW method for solving the fractional integro-differential equations with a weakly singular kernel. Applied Mathematics and Computation 275: 72-80.

Yi, M., Wang, L. & Huang, J. 2016. Legendre wavelets method for the numerical solution of fractional integro-differential equations with weakly singular kernel. Applied Mathematical Modelling 40: 3422-3437.

Yüzbaş?, Ş. 2014. Laguerre approach for solving pantograph-type Volterra integro-differential equations. Applied Mathematics and Computation 232: 1183-1199.

Yüzbaş?, Ş. & Karaçay?r, M. 2017. A Galerkin-like scheme to solve two-dimensional telegraph equation using collocation points in initial and boundary conditions. Computers and Mathematics with Applications 74: 3242-3249.

 

*Corresponding author; email: dvarol@pau.edu.tr

 

 

 

previous