Sains Malaysiana 48(3)(2019):
543–553
http://dx.doi.org/10.17576/jsm-2019-4803-06
Fenazin sebagai
Potensi Antibiotik Baru daripada Streptomyces kebangsaanensis
(Fenazin as Potential
New Antibiotics from Streptomyces kebangsaanensis)
JUWAIRIAH REMALI1,
NORAZIAH
MOHAMAD
ZIN2*,
CHYAN
LEONG
NG3,
WAN
M.
AIZAT3
& JOHN J.L TIONG4
1Pusat Pengajian Biosains dan Bioteknologi, Fakulti Sains dan
Teknologi, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Pusat Penuaan Sihat dan
Kesejahteraan (HCARE), Fakulti
Sains Kesihatan,
Universiti Kebangsaan Malaysia,
Jalan Raja Muda Abdul Aziz, 50300
Kuala Lumpur, Federal Territory, Malaysia
3Institut Biologi Sistem (INBIOSIS), Universiti Kebangsaan Malaysia,
43600 UKM
Bangi, Selangor Darul
Ehsan, Malaysia
4Pusat Pengajian Farmasi, Universiti Taylor, No. 1, Jalan
Taylor’s, 47500 Subang Jaya, Selangor
Darul Ehsan, Malaysia
Received: 31 March 2018/Accepted:
15 November 2018
ABSTRAK
Fenazin merupakan metabolit sekunder yang biasanya disintesis secara semula jadi oleh
Pseudomonas dan Streptomyces.
Ia merupakan
sebatian heterosiklik yang mempunyai sebatian bernitrogen pada struktur teras cecincin. Kajian mengenai antibiotik ini telah bermula
seawal abad
ke-19 lagi dan ternyata
menjadi calon
dadah yang berpotensi tinggi dalam dunia
perubatan. Sehingga
kini, lebih daripada
100 jenis fenazin
telah diterokai daripada sumber semula jadi dan
boleh bertindak
sebagai antibakteria, antikanser, antivirus, antitumor serta
antiparasit. Setakat
ini, kajian biosintesis
fenazin yang telah
dijalankan terhadap Pseudomonas
dan Streptomyces telah
mendedahkan gen yang bertanggungjawab
dalam tapak
jalan biosintesis fenazin, namun begitu, gen khusus yang terlibat dalam penghasilan terbitan fenazin yang kompleks masih dalam hipotesis.
Dalam ulasan
ini, kami membincangkan kepentingan fenazin serta pemahaman terkini tentang tapak jalan biosintesis
fenazin yang berjaya
diterokai di dalam Streptomyces
kebangsaanensis.
Kata kunci:
Antibiotik; biosintesis;
fenazin; Streptomyces kebangsaanensis
ABSTRACT
Phenazine is a
secondary metabolite that is naturally synthesized by Pseudomonas
and Streptomyces. It is a heterocyclic compound that has
nitrogen group at the core structure of the ring. The study of antibiotics
has begun since 19th century and turned out to be a highly potential
drug in a medical world. To date, more than 100 types of phenazines
have been discovered from natural sources and acted as antibacterial,
anticancer, antiviral, antitumor and antiparasites.
To date, the study of phenazine biosynthesis
was carried out on Pseudomonas and Streptomyces has
showed the genes responsible in the pathway of phenazine
biosynthesis but the specific genes involved in the production of
complex phenazine derivatives are still hypothetical. In this review,
we discuss the importance of phenazine
as well as the latest understanding of phenazine
biosynthesis pathways that have been successful discovered in Streptomyces
kebangsaanensis.
Keywords: Antibiotics; biosynthesis; phenazine;
Streptomyces
kebangsaanensis
REFERENCES
Abdelfattah, M.S., Ishikawa, N., Karmakar,
U.K., Yamaku, K. & Ishibashi,
M. 2016. New phenazine analogues from
Streptomyces sp. IFM 11694 with TRAIL resistance-overcoming
activities. Journal of Antibiotics 69(6): 446-450.
Abdelfattah, M.S., Toume,
K. & Ishibashi, M. 2011. Isolation
and structure elucidation of izuminosides
A-C: A rare phenazine glycosides from Streptomyces sp. IFM 11260.
Journal of Antibiotics 64(3): 271-275.
Abken, H.J., Tietze, M., Brodersen,
J., Bäumer, S., Beifuss,
U. & Deppenmeier, U. 1998. Isolation
and characterization of methanophenazine
and function of phenazines in membrane-bound electron transport of Methanosarcina mazei Gö1.
Journal of Bacteriology 180(8): 2027-2032.
Arbiser, J.L. & Moschella,
S.L. 1995. Clofazimine: A review of its
medical uses and mechanisms of action. Journal of the American
Academy of Dermatology 32(2): 241-247.
Asano,
K., Takahashi, K., Tomita, F. & Kawamoto, I. 1986. DC- 86-M,
a novel antitumor antibiotic. I. Taxonomy of producing organism
and fermentation. The Journal of Antibiotics 39(5): 619-623.
Blankenfeldt W. 2013. The biosynthesis of
phenazines. Dlm. Microbial Phenazines, disunting oleh Chincholkar, S. & Thomashow, L. Springer, Berlin, Heidelberg. hlm. 1-17.
Blankenfeldt, W., Kuzin, A.P., Skarina, T., Korniyenko, Y., Tong, L., Bayer, P., Janning,
P., Thomashow, L.S. & Mavrodi,
D.V. 2004. Structure and function of the phenazine
biosynthetic protein PhzF from Pseudomonas
fluorescens. Proceedings of the National Academy of
Sciences of the United States of America 101(47): 16431-16436.
Brisbane,
P.G., Janik, L.J., Tate, M. & Warren,
R. 1987. Revised structure for the phenazine
antibiotic from Pseudomonas fluorescens
2-79 (NRRL B-15132). Antimicrobial Agents and Chemotherapy
31(12): 1967-1971.
Cha,
J.W., Lee, S.Il,
Kim, M.C., Thida, M., Lee, J.W., Park, J.S. & Kwon, H.C. 2015. Pontemazines A and B, phenazine
derivatives containing a methylamine linkage from Streptomyces
sp. UT1123 and their protective effect to HT-22 neuronal cells.
Bioorganic and Medicinal Chemistry Letters 25(22): 5083-5086.
Delaney,
S.M., Mavrodi, D.V., Bonsall,
R.F. & Thomashow, L.S. 2001. phzO,
a gen for biosynthesis of 2-hydroxylated phenazine
compounds in Pseudomonas aureofaciens
30-84. Journal of Bacteriology 183(1): 318-327.
Dietrich,
L.E., Price-Whelan, A., Petersen, A., Whiteley,
M. & Newman, D.K. 2006. The phenazine
pyocyanin is a terminal signalling
factor in the quorum sensing network of Pseudomonas aeruginosa.
Molecular Microbiology 61(5): 1308-1321.
Ding,
Z.G., Li, M.G., Ren, J., Zhao, J.Y., Huang, R., Wang, Q.Z., Cui,
X.L., Zhu, H.J. & Wen, M.L. 2011. Phenazinolins
A-E: Novel diphenazines from a tin mine tailings-derived Streptomyces
species. Organic & Biomolecular
Chemistry 9(8): 2771-2776.
Emerson,
J., Rosenfeld, M., McNamara, S., Ramsey, B. & Gibson, R.L. 2002.
Pseudomonas aeruginosa and other predictors of mortality
and morbidity in young children with cystic fibrosis. Pediatric
Pulmonology 34(2): 91-100.
Fitzpatrick,
D.A. 2009. Lines of evidence for horizontal gene transfer of a phenazine producing operon into multiple bacterial species.
Journal of Molecular Evolution 68(2): 171-185.
Fordos, M. 1860. Recherches
sur la matière colorante
des suppurations bleues: Pyocyanine.
CR Acad. Sci. 51: 215-217.
Gebhardt, K., Schimana,
J., Krastel, P., Dettner,
K., Rheinheimer, J., Zeeck,
A. & Fiedler, H.P. 2002. Endophenazines
AD, new phenazine antibiotics from the arthropod associated endosymbiont
Streptomyces anulatus. I. Taxonomy,
fermentation, isolation and biological activities. The Journal
of Antibiotics 55(9): 794-800.
Geiger,
A., Keller-Schierlein, W., Brandl,
M. & Zähner, H. 1988. Metabolites
of microorganisms. 247. Phenazines from
Streptomyces antibioticus, strain Tu 2706.
The Journal of Antibiotics 41(11): 1542-1551.
Gessard, C. 1882. Sur les colorations bleue et verte des linges a pansements. Compt. Rend.
Acad. Sci. 94: 536-568.
Giddens,
S.R., Houliston, G.J. & Mahanty,
H.K. 2003. The influence of antibiotic production and pre-emptive
colonization on the population dynamics of Pantoea
agglomerans (Erwinia
herbicola) Eh1087 and Erwinia
amylovora in planta. Environmental
Microbiology 5(10): 1016-1021.
Giddens,
S.R., Feng, Y. & Mahanty, H.K. 2002.
Characterization of a novel phenazine
antibiotic gen cluster in Erwinia
herbicola Eh1087. Molecular Microbiology
45(3): 769-783.
Guttenberger, N., Blankenfeldt,
W. & Breinbauer, R. 2017. Recent developments
in the isolation, biological function, biosynthesis, and synthesis
of phenazine natural products. Bioorganic and Medicinal Chemistry
25(22): 6149-6166.
Hassan,
H.M. & Fridovich, I. 1980. Mechanism
of the antibiotic action pyocyanine. Journal
of Bacteriology 141(1): 156-163.
Hernandez,
M.E., Kappler, A. & Newman, D.K. 2004.
Phenazines and other redox-active antibiotics promote microbial
mineral reduction. Applied and Environmental Microbiology 70(2):
921-928.
Hollstein, U. & Van Gemert
Jr., R.J. 1971. Interaction of phenazines
with polydeoxyribonucleotides. Biochemistry 10(3): 497-504.
Hollstein, U., Mock, D.L., Sibbitt,
R.R., Roisch, U. & Lingens,
F. 1978. Incorporation of shikimic acid
into iodinin. Tetrahedron Letters 19(33): 2987-2990.
Jayatilake, G.S., Thornton, M.P., Leonard, A.C., Grimwade, J.E. & Baker, B.J. 1996. Metabolites from an
Antarctic sponge-associated bacterium, Pseudomonas aeruginosa.
Journal of Natural Products 59(3): 293-296.
Johnson,
L.E. & Dietz, A. 1969. Lomofungin,
a new antibiotic produced by Streptomyces lomondensis
sp. n. Applied Microbiology 17(5): 755-759.
Kearns,
L. & Hale, C. 1996. Partial characterization of an inhibitory
strain of Erwinia herbicola with
potential as a biocontrol agent for Erwinia
amylovora, the fire blight pathogen.
Journal of Applied Bacteriology 81(4): 369-374.
Kennedy,
R.K., Naik, P.R., Veena,
V., Lakshmi, B.S., Lakshmi, P., Krishna, R. & Sakthivel,
N. 2015. 5-Methyl phenazine- 1-carboxylic
acid: A novel bioactive metabolite by a rhizosphere soil bacterium
that exhibits potent antimicrobial and anticancer activities. Chemico-Biological
Interactions 231: 71-82.
Kerr,
J. 2000. Phenazine pigments; Antibiotics
and virulence factors. Infectious Disease Review 2(4): 184-194.
Kim,
W.G., Ryoo, I.J., Yun, B.S., Shin-Ya,
K., Seto, H. & Yoo,
I.D. 1997. New diphenazines with neuronal
cell protecting activity, phenazostatins
A and B, produced by Streptomyces sp. The Journal of Antibiotics
50(9): 715-721.
Kitahara, M. 1982. Saphenamycin,
a novel antibiotic from a strain of Streptomyces. Journal
of Antibiotics 35(10): 1412-1414.
Krastel, P., Zeeck, A.,
Gebhardt, K., Fiedler, H.P. & Rheinheimer,
J. 2002. Endophenazines AD, new phenazine
antibiotics from the athropod associated
endosymbiont Streptomyces anulatus
II. Structure elucidation. The Journal of Antibiotics 55(9):
801-806.
Kondratyuk, T.P., Park, E.J., Yu, R., van Breemen, R.B., Asolkar, R.N., Murphy,
B.T., Fenical, W. & Pezzuto,
J.M. 2012. Novel marine phenazines as
potential cancer chemopreventive and anti-inflammatory
agents. Marine Drugs 10(12): 451-464.
Lau,
G.W., Hassett, D.J., Ran, H. & Kong,
F. 2004a. The role of pyocyanin in Pseudomonas
aeruginosa infection. Trends in Molecular Medicine 10(12):
599-606.
Lau,
G.W., Ran, H., Kong, F., Hassett, D.J.
& Mavrodi, D. 2004b. Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infection
and Immunity 72(7): 4275-4278.
Laursen, J.B. & Nielsen, J. 2004. Phenazine natural products: Biosynthesis, synthetic analogues,
and biological activity. Chemical Reviews 104(3): 1663-1686.
Ledderhose, G. 1888. Ueber
den blauen Eiter.
Langenbecks Arch Klin
Chir Ver Dtsch
Z Chir 28: 201-230.
Levitch, M.E. & Rietz,
P. 1966. The isolation and characterization of 2-hydroxyphenazine
from Pseudomonas aureofaciens.
Biochemistry 5(2): 689-692.
Levitch, M. & Stadtman,
E. 1964. A study of the biosynthesis of phenazine-1-carboxylic acid.
Archives of Biochemistry and Biophysics 106: 194-199.
Mavrodi, D.V., Parejko, J.A., Mavrodi, O.V., Kwak, Y.S., Weller, D.M., Blankenfeldt,
W. & Thomashow, L.S. 2013. Recent
insights into the diversity, frequency and ecological roles of phenazines
in fluorescent Pseudomonas spp. Environmental Microbiology
15(3): 675-686.
Mavrodi, D.V., Peever,
T.L., Mavrodi, O.V., Parejko,
J.A., Raaijmakers, J.M., Lemanceau,
P., Mazurier, S., Heide,
L., Blankenfeldt, W. & Weller, D.M.
2010. Diversity and evolution of the phenazine
biosynthesis pathway. Applied and Environmental Microbiology
76(3): 866-879.
Mavrodi, D.V., Blankenfeldt,
W. & Thomashow, L.S. 2006. Phenazine
compounds in fluorescent Pseudomonas sp. biosynthesis and
regulation. Annual Review Phytopathology 44: 417-445.
Mavrodi, D.V., Bonsall,
R.F., Delaney, S.M., Soule, M.J., Phillips, G. & Thomashow,
L.S. 2001. Functional analysis of gens for biosynthesis of pyocyanin
and phenazine-1- carboxamide from Pseudomonas
aeruginosa PAO1. Journal of Bacteriology 183(21): 6454-6465.
McDonald,
M., Mavrodi, D.V., Thomashow,
L.S. & Floss, H.G. 2001. Phenazine
biosynthesis in Pseudomonas fluorescens:
Branchpoint from the primary shikimate biosynthetic pathway
and role of phenazine-1, 6-dicarboxylic acid. Journal of the
American Chemical Society 123(38): 9459-9460.
Mentel, M., Ahuja, E.G., Mavrodi,
D.V., Breinbauer, R., Thomashow,
L.S. & Blankenfeldt, W. 2009. Of two
make one: The biosynthesis of phenazines.
Chembiochem. 10(14): 2295-2304.
Parsons,
J.F., Song, F., Parsons, L., Calabrese, K., Eisenstein, E. &
Ladner, J.E. 2004a. Structure and function of the phenazine
biosynthesis protein PhzF from Pseudomonas
fluorescens 2-79. Biochemistry 43(39): 12427-12435.
Parsons,
J.F., Calabrese, K., Eisenstein, E. & Ladner, J.E. 2004b. Structure
of the phenazine biosynthesis enzyme PhzG.
Acta Crystallographica
Section D: Biological Crystallography 60(11): 2110-2113.
Pierson
III, L.S. & Pierson, E.A. 2010. Metabolism and function of phenazines in bacteria: Impacts on the behavior of bacteria
in the environment and biotechnological processes. Applied Microbiology
and Biotechnology 86(6): 1659-1670.
Pierson,
L.S., Gaffney, T., Lam, S. & Gong, F. 1995. Molecular analysis
of gens encoding phenazine biosynthesis
in the biological control bacterium Pseudomonas aureofaciens 30- 84. FEMS Microbiology Letters 134(2-3):
299-307.
Podojil, M. & Gerber, N.N. 1967. The biosynthesis
of 1, 6-phenazinediol 5, 10-dioxide (Iodinin)
by Brevibacterium iodinum.
Biochemistry 6(9): 2701-2705.
Recinos, D.A., Sekedat,
M.D., Hernandez, A., Cohen, T.S., Sakhtah,
H., Prince, A.S., Price-Whelan, A. & Dietrich, L.E. 2012. Redundant
phenazine operons in Pseudomonas aeruginosa exhibit
environment-dependent expression and differential roles in pathogenicity.
Proceedings of the National Academy of Sciences 109(47):
19420-19425.
Reddy,
V.M., O’Sullivan, J.F. & Gangadharam,
P.R. 1999. Antimycobacterial activities of riminophenazines.
Journal of Antimicrobial Chemotherapy 43(5): 615-623.
Remali, J., Sarmin, N.I.M.,
Ng, C.L., Tiong, J.J.L., Aizat,
W.M., Keong, L.K. & Zin, N.M. 2017b.
Genomic characterization of a new endophytic
Streptomyces kebangsaanensis identifies biosynthetic pathway gene clusters
for novel phenazine antibiotic production.
Peer J. 5: e3738.
Römer, A. & Herbert, R. 1982. Further observations on the source of
nitrogen in phenazine biosynthesis. Z.
Naturforsch., Ser. C. 37(11): 1070-1074.
Sarmin, N.I.M., Tan, G.Y.A., Franco, C.M., Edrada-Ebel, R., Latip, J. &
Zin, N.M. 2013. Streptomyces kebangsaanensis
sp. nov., an endophytic actinomycete isolated
from an ethnomedicinal plant, which produces
phenazine-1- carboxylic acid. International Journal of Systematic
and Evolutionary Microbiology 63(Pt 10): 3733-3738.
Schoental, R. 1941. The nature of the antibacterial
agents present in Pseudomonas pyocyanea
cultures. British Journal of Experimental Pathology 22(3):
137-147.
Schroeter, J. 1872. Ueber
einige durch
Bacterien gebildete Pigmente. Beiträge zur Biologie der Pflanzen 1: 109-126.
Selengut, J.D. & Haft, D.H. 2010. Unexpected
abundance of coenzyme F420-dependent enzymes in Mycobacterium
tuberculosis and other actinobacteria.
Journal of Bacteriology 192(21): 5788-5798.
Smirnov,
V.V. & Kiprianova, E.A. 1990. Bacteria
of Pseudomonas genus. Kiev, Ukraine: Naukova
Dumka. hlm.
100-111.
Spicer,
J.A., Gamage, S.A., Rewcastle,
G.W., Finlay, G.J., Bridewell, D.J., Baguley, B.C. & Denny, W.A. 2000. Bis
(phenazine-1-carboxamides): Structure-activity relationships for
a new class of dual topoisomerase I/II-directed anticancer drugs.
Journal of Medicinal Chemistry 43(7): 1350-1358.
Stewart,
A.J., Mistry, P., Dangerfield, W., Bootle,
D., Baker, M., Kofler, B., Okiji,
S., Baguley, B.C., Denny, W.A. & Charlton, P.A. 2001. Antitumor
activity of XR5944, a novel and potent topoisomerase poison. Anti-cancer
Drugs 12(4): 359-367.
Cholo, C.M., Steel, H.C., Fourie, P.B., Germishuizen, W.A., Anderson, R. 2011. Clofazimine:
Current status and future prospects. Journal of Antimicrobial
Chemotherapy 67(2): 290-298.
Takahashi,
I., Takahashi, K.I., Ichimura, M., Morimoto,
M., Asano, K., Kawamoto, I., Tomita, F. & Nakano, H. 1988. Duocarmycin
A, a new antitumor antibiotic from Streptomyces. The Journal
of Antibiotics 41(12): 1915-1917.
Thomashow, L.S. & Weller, D.M. 1988. Role of a
phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis
var. tritici. Journal of
Bacteriology 170(8): 3499-3508.
Thomashow, L.S., Weller, D.M., Bonsall,
R.F. & Pierson, L.S. 1990. Production of the antibiotic phenazine-1-carboxylic
acid by fluorescent Pseudomonas species in the rhizosphere
of wheat. Applied and Environmental Microbiology 56(4): 908-912.
Turner,
J.M. & Messenger, A.J. 1986. Occurrence, biochemistry and physiology
of phenazine pigment production. Advances in Microbial Physiology
27: 211-275.
Van’t Land, C.W., Mocek, U. & Floss, H.G.
1993. Biosynthesis of the phenazine antibiotiks, the saphenamycins and
esmeraldins, in Streptomyces antibioticus. The Journal of Organic Chemistry 58(24):
6576-6582.
Wang,
Y., Luo, Q., Zhang, X. & Wang, W. 2011. Isolation and purification
of a modified phenazine, griseoluteic
acid, produced by Streptomyces griseoluteus
P510. Research in Microbiology 162(3): 311-319.
Woeng, C.A.T.F., Bloemberg, G.V., van der Bij, A.J., van der Drift, K.M., Schripsema,
J., Kroon, B., Scheffer, R.J., Keel, C.,
Bakker, P.A. & Tichy, H.V. 1998. Biocontrol
by phenazine-1-carboxamide-producing Pseudomonas chlororaphis
PCL1391 of tomato root rot caused by Fusarium
oxysporum f. sp. radicis-lycopersici.
Molecular Plant- Microbe Interactions 11(11): 1069-1077.
Wu, C.,
Van Wezel, G.P. & Hae
Choi, Y. 2015. Identification of novel endophenaside
antibiotics produced by Kitasatospora
sp. MBT66. Journal of Antibiotics 68(7): 445-452.
Yun, B.S., Ryoo, I.J., Kim, W.G., Kim, J.P., Koshino,
H., Scto, H. & Yoo,
I.D. 1996. Structures of phenazostatins
A and B, neuronal cell protecting substances of microbial origin.
Tetrahedron Letters 37(47): 8529-8530.
*Corresponding author; email: noraziah.zin@ukm.edu.my
|