Sains Malaysiana 48(4)(2019): 803–811
http://dx.doi.org/10.17576/jsm-2019-4804-12
Application of K-Impregnated Staghorn Coral as
Catalyst in the Transesterification of Waste Cooking Oil
(Penggunaan K-Impregnasi Batu Karang Staghorn
sebagai Pemangkin dalam Transesterifikasi Sisa Minyak Masak)
NABILAH ATIQAH ZUL1,2, SHANGEETHA GANESAN1 & M. HAZWAN HUSSIN1,2*
1School of Chemical
Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
2Materials Technology
Research Group (MaTReC), School of Chemical Sciences, Universiti Sains
Malaysia, 11800 Minden, Pulau Pinang, Malaysia
Received:
20 December 2018/Accepted: 7 February 2019
ABSTRACT
This work focuses on the catalytic
potential of K-impregnated staghorn coral as a catalyst in methyl esters
production via methanolysis of waste cooking oil (WCO).
The prepared catalyst was analyzed by Hammett indicators, XRF,
Brunauer-Emmett-Teller (BET)-N2 adsorption
method, ATR-FTIR, TGA, XRD and SEM to determine its physicochemical properties. ATR-FTIR and XRD results confirmed the formation of K2O
species upon KOH impregnation, thus, resulting in good catalytic
activity. Reaction parameters such as methanol to oil ratio, reaction time and
amount of catalyst were evaluated to find out the best conditions for the
transesterification process. About 89.51 ± 4.78 % of biodiesel contents were
obtained under the optimum conditions.
Keywords: Biodiesel; staghorn coral;
transesterification; waste cooking oil
ABSTRAK
Kajian ini memfokuskan potensi
pemangkin K-impregnasi batu karang staghorn sebagai pemangkin dalam penghasilan
metil ester melalui metanolisis sisa minyak masak (WCO).
Pemangkin yang telah disediakan telah dianalisis oleh penunjuk Hammette, XRF,
kaedah Brunauer-Emmett-Teller (BET)-penjerapan N2, ATR-FTIR, TGA, XRD dan SEM untuk menentukan sifat
fiziokimianya. Keputusan ATR-FTIR dan XRD mengesahkan
pembentukan spesies K2O apabila impregnasi KOH,
sehingga menghasilkan aktiviti pemangkin yang baik. Parameter tindak balas
seperti nisbah metanol kepada minyak, masa tindak balas dan jumlah pemangkin
telah dinilai untuk mengetahui keadaan terbaik untuk proses transesterifikasi.
Sebanyak 89.51 ± 4.78 % kandungan biodiesel telah diperoleh di bawah keadaan
optimum.
Kata kunci: Batu karang staghorn; biodiesel; sisa minyak masak;
transesterifikasi
REFERENCES
Attaphong,
C., Do, L. & Sabatini, D. 2012. Vegetable oil-based microemulsions using
carboxylate-based extended surfactants and their potential as an alternative
renewable biofuel. Fuel 94: 606-613.
Bajpai, D.
& Tyagi, V.K. 2006. Biodiesel: Source, production, composition, properties
and its benefits. J. Oleo Sci. 55: 487-502.
Baroutian,
S., Aroua, M.K., Raman, A.A.A. & Sulaiman, N.M.N. 2010. Potassium hydroxide
catalyst supported on palm shell activated carbon for transesterification of
palm oil. Fuel Process. Technol. 91: 1378-1385.
Bazargan,
A., Kostic, M.D., Stamenkovic, O.S., Veljkovic, V.B. & McKay, G. 2015. A
calcium oxide-based catalyst derived from palm kernel shell gasification
residues for biodiesel production. Fuel 150: 519-525.
Birla, A.,
Singh, B., Upadhyay, S.N. & Sharma, Y.C. 2012. Kinetics studies of
synthesis of biodiesel from waste frying oil using a heterogeneous catalyst
derived from snail shell. Bioresour. Technol. 106: 95-100.
Boey, P.L.,
Maniam, G.P., Hamid, S.A. & Ali, D.M.H. 2011. Crab and cockle shells as
catalysts for the preparation of methyl esters from low free fatty acid chicken
fat. J. Am. Oil Chem. Soc. 88: 283-288.
Boro, J.,
Konwar, L.J. & Deka, D. 2014. Transesterification of non-edible feedstock
with lithium incorporated eggshell derived CaO for biodiesel production. Fuel
Process. Technol. 122: 72-78.
Boro, J.,
Thakur, A.J. & Deka, D. 2011. Solid oxide derived from waste shells of Turbonilla
striatula as a renewable catalyst for biodiesel production. Fuel
Process. Technol. 92: 2061-2067.
Buasri, A.,
Chaiyut, N., Loryuenyong, V., Rodklum, C., Chaikwan, T., Kumphan, N., Jadee,
K., Klinklom, P. & Wittayarounayut, W. 2012. Transesterification of waste frying
oil for synthesizing biodiesel by KOH supported on coconut shell activated
carbon in packed bed reactor. ScienceAsia 38: 283-288.
Canesin,
E.A., Oliveira, C.C.D., Matsushita, M., Dias, L.F., Pedrao, M.R. & Souza,
N.E.D. 2014. Characterization of residual oils for biodiesel production. Electron.
J. Biotechnol. 17: 39-45.
Cetinkaya,
M. & Karaosmanoglu, F. 2004. Optimization of base-catalyzed
transesterification reaction of used cooking oil. Energy Fuels 18:
1888-1895.
Degirmenbasi,
N., Coskun, S., Boz, N. & Kalyon, D.M. 2015. Biodiesel synthesis from
canola oil via heterogeneous catalysis using functionalized CaO nanoparticles. Fuel 153: 620-627.
Demirbas, A.
2009. Progress and recent trends in biodiesel fuels. Energy Convers. Manage.
50: 14-34.
Eevera, T., Rajendran, K.
& Saradha, S. 2009. Biodiesel production process optimization and
characterization to assess the suitability of the product for varied
environmental conditions. Renew. Energy 34: 762-765.
Ekeoma, M.O., Okoye, P.A.C., Ajiwe, V.I.E. & Hameed, B.H.
2017. Murex turnispina shell as catalyst for bio-diesel production. Int.
Res. J. Pure Appl. Chem. 14: 1-13.
Freedman, B., Pryde,
E.H. & Mounts, T.L. 1984. Variables affecting the yields of fatty esters
from transesterified vegetable oils. J. Am. Oil Chem. Soc. 61:
1638-1643.
Hassan, M.H. &
Kalam, M.A. 2013. An overview of biofuel as a renewable energy source:
Development and challenges. Procedia Eng. 56: 39-53.
Huang, D., Zhou, H.
& Lin, L. 2012. Biodiesel: An alternative to conventional fuel. Energy
Procedia 16: 1874-1885.
Javidialesaadi, A. &
Raeissi, S. 2013. Biodiesel production from high free fatty acid-content oils:
Experimental investigation of the pretreatment step. APCBEE Procedia. 5:
474-478.
Kabo, K.S., Yacob, A.R.,
Bakar, W.A.W.A., Buang, N.A., Bello, A.M. & Ruskam, A. 2015. BBD
optimization of K-ZnO catalyst modification process for heterogeneous
transesterification of rice bran oil to biodiesel. Soft Soil Engineering
International Conference 2015 (SEIC2015). Langkawi, Malaysia.
012063.
Kahng, S.E.,
Garcia-Sais, J.R., Spalding, H.L., Brokovich, E., Wagner, D., Weil, E.,
Hinderstein, L. & Toonen, R.J. 2010. Community ecology of mesophotic coral
reef ecosystems. Coral Reefs 29: 255-275.
Kapilan, N., Babu,
T.P.A. & Reddy, R.P. 2009. Technical aspects of biodiesel and its oxidation
stability. Int. J. ChemTech Res. 1: 278-282.
Kataria, J., Mohapatra,
S.K. & Kundu, K. 2017. Biodiesel production from frying oil using
zinc-doped calcium oxide as heterogeneous catalysts. Energ. Source Part A 39:
861-866.
Kaur, M. & Ali, A.
2011. Lithium ion impregnated calcium oxide as nano catalyst for the bio-diesel
production from karanja and jatropha oils. Renew. Energy 36: 2866-2871.
Kesic, Z., Lukic, I.,
Zdujic, M., Liu, H. & Skala, D. 2012. Mechanochemically synthesized CaO ZnO
catalyst for biodiesel production. Procedia Eng. 42: 1169-1178.
Kumar, D. & Ali, A.
2012. Nanocrystalline K-CaO for the transesterification of a variety of
feedstocks: Structure, kinetics and catalytic properties. Biomass Bioenergy 46:
459-468.
Lam, M.K., Lee, K.T.
& Mohamed, A.R. 2010. Homogenous, heterogenous and enzymatic catalysis for
transesterification of high free fatty acid oil (waste cooking oil) to
biodiesel: A review. Biotechnol. Adv. 28: 500-518.
Leung, D.Y.C. & Guo,
Y. 2006. Transesterification of neat and used frying oil: Optimization for
biodiesel production. Fuel Process. Technol. 87: 883-890.
Liu, H., Guo, H.S.,
Wang, X.J., Jiang, J.Z., Lin, H., Han, S. & Pei, S.P. 2016. Mixed and
ground KBr-impregnated calcined snail shell and kaolin as solid base catalysts
for biodiesel production. Renew. Energy 93: 648-657.
Ma, F. & Hanna, M.A.
1999. Biodiesel production: A review. Bioresour. Technol. 70: 1-15.
Mamat, F.M. & Yacob,
A.R. 2015. Kinetic study of biodiesel using egg shell for base
transesterification reaction: http://eprints.utm.my/id/eprint/62086/1/
ZainabRaml i2015_Modif iedDes i l icatedNat u r
alZeoliteasCatalystinKnoevenagelReaction.pdf#page=75. Accessed on 15th
September 2018.
Meher, L.C., Kulkarni,
M.G., Dalai, A.K. & Naik, S.N. 2006. Transesterification of karanja (Pongamia
pinnata) oil by solid basic catalysts. Eur. J. Lipid Sci. Technol. 108:
389-397.
Modiba, E., Enweremadu,
C. & Rutto, H. 2015. Production of biodiesel from waste vegetable oil using
impregnated diatomite as heterogeneous catalyst. Chin. J. Chem. 23:
281-289.
Moradi, G. &
Mohammadi, F. 2014. Utilization of waste coral for biodiesel production via
transesterification of soybean oil. Int. J. Environ. Sci. Technol. 11:
805-812.
Mutreja, V., Singh, S.
& Ali, A. 2011. Biodiesel from mutton fat using KOH impregnated MgO as
heterogeneous catalysts. Renew. Energy 36: 2253-2258.
Onukwuli, D.O.,
Emembolu, L.N., Ude, C.N., Aliozo, S.O. & Menkiti, M.C. 2017. Optimization
of biodiesel production from refined cotton seed oil and its characterization. Egypt.
J. Petrol. 26: 103-110.
Otadi, M., Shahraki, A.,
Goharrokhi, M. & Bandarchian, F. 2011. Reduction of free fatty acids of
waste oil by acid-catalyzed esterification. Procedia Eng. 18: 168-174.
Pandolfi, J.M. &
Jackson, J.B.C. 2006. Ecological persistence interrupted in Caribbean coral
reefs. Eco. Lett. 9: 818-826.
Precht, W.F., Bruckner,
A.W., Aronson, R.B. & Bruckner, R.J. 2002. Endangered acroporid corals of
the Caribbean. Coral Reefs 21: 41-42.
Rajalingam, A., Jani,
S.P., Kumar, A.S. & Khan, M.A. 2016. Production methods of biodiesel. J.
Chem. Pharm. Res. 8: 170-173.
Roschat, W., Kacha, M.,
Yoosuk, B., Sudyoadsuk, T. & Promarak, V. 2012. Biodiesel production based
on heterogeneous process catalyzed by solid waste coral fragment. Fuel 98:
194-202.
Ruiz, M.G., Hernandez,
J., Banos, L., Montes, J.N. & Garcia, M.E.R. 2009. Characterization of
calcium carbonate, calcium oxide, and calcium hydroxide as starting point to
the improvement of lime for their use in construction. J. Mater. Civil Eng. 21:
694-698.
Saxena, P., Jawale, S.
& Joshipura, M.H. 2013. A review on prediction of properties of biodiesel
and blends of biodiesel. Procedia Eng. 51: 395-402.
Sharma, Y.C., Singh, B.
& Korstad, J. 2010. Application of an efficient nonconventional
heterogeneous catalyst for biodiesel synthesis from Pongamia pinnata oil. Energy Fuels 24: 3223-3231.
Shereena, K.M. &
Thangaraj, T. 2009. Biodiesel: An alternative fuel produced from vegetable oils
by transesterification. Electron. J. Bio. 5: 67-74.
Sinha, D. &
Murugavelh, S. 2016. Biodiesel production from waste cotton seed oil using low
cost catalyst: Engine performance and emission characteristics. Perspect.
Sci. 8: 237-240.
Sirisomboonchai, S.,
Abuduwayiti, M., Guan, G., Samart, C., Abliz, S., Hao, X., Kusakabe, K. &
Abudula, A. 2015. Biodiesel production from waste cooking oil using calcined
scallop shell as catalyst. Energy Convers. Manage. 95: 242-247.
Suryaputra, W., Winata,
I., Indraswati, N. & Ismadji, S. 2013. Waste capiz (Amusium cristatum)
shell as a new heterogeneous catalyst for biodiesel production. Renew.
Energy 50: 795-799.
Tan, Y.H., Abdullah, M.O.,
Nolasco-Hipolito, C. & Taufiq- Yap, Y.H. 2015. Waste ostrich- and
chicken-egg shells as heterogeneous base catalyst for biodiesel production from
used cooking oil: Catalyst characterization and biodiesel yield performance. Appl.
Energy 160: 58-70.
Viriya-Empikul, N., Krasae, P.,
Nualpaeng, W., Yoosuk, B. & Faungnawakij, K. 2012. Biodiesel production
over Ca-based solid catalysts derived from industrial wastes. Fuel 92:
239-244.
Watkins, R.S., Lee, A.F. & Wilson, K.
2004. Li-CaO catalysed tri-glyceride transesterification for biodiesel
applications. Green Chem. 6: 335-340.
Wu, H., Zhang, J., Wei, Q., Zheng, J.
& Zhang, J. 2013. Transesterification of soybean oil to biodiesel using
zeolite supported CaO as strong base catalysts. Fuel Process. Technol. 109:
13-18.
Xie, W. & Huang, X. 2006. Synthesis
of biodiesel from soybean oil using heterogeneous KF/ZnO catalyst. Catal.
Lett. 107: 53-59.
Xie, W. & Li, H. 2006.
Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel
production from soybean oil. J. Mol. Catal. A Chem. 255: 1-9.
Yacob, A.R., Muda, N.W. & Zaki,
M.A.M. 2017. Effect of one step activation KOH modified carbon in dimethyl
carbonate transesterification reactions. Malaysian J. Anal. Sci. 21:
820-829.
Zhang, J. & Meng, Q. 2014.
Preparation of KOH/CaO/C supported biodiesel catalyst and application process. World
J. Eng. Technol. 2: 184-191.
Zielinski, J.M. & Kettle, L. 2013. Physical
Characterization: Surface Area and Porosity. London: Intertek. p.1-5.
*Corresponding author; email:
mhh@usm.my