Sains Malaysiana 48(4)(2019): 803–811

http://dx.doi.org/10.17576/jsm-2019-4804-12

 

Application of K-Impregnated Staghorn Coral as Catalyst in the Transesterification of Waste Cooking Oil

(Penggunaan K-Impregnasi Batu Karang Staghorn sebagai Pemangkin dalam Transesterifikasi Sisa Minyak Masak)

 

NABILAH ATIQAH ZUL1,2, SHANGEETHA GANESAN1 & M. HAZWAN HUSSIN1,2*

 

1School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia

 

2Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia

 

Received: 20 December 2018/Accepted: 7 February 2019

 

ABSTRACT

This work focuses on the catalytic potential of K-impregnated staghorn coral as a catalyst in methyl esters production via methanolysis of waste cooking oil (WCO). The prepared catalyst was analyzed by Hammett indicators, XRF, Brunauer-Emmett-Teller (BET)-N2 adsorption method, ATR-FTIR, TGA, XRD and SEM to determine its physicochemical properties. ATR-FTIR and XRD results confirmed the formation of K2O species upon KOH impregnation, thus, resulting in good catalytic activity. Reaction parameters such as methanol to oil ratio, reaction time and amount of catalyst were evaluated to find out the best conditions for the transesterification process. About 89.51 ± 4.78 % of biodiesel contents were obtained under the optimum conditions.

 

Keywords: Biodiesel; staghorn coral; transesterification; waste cooking oil

 

ABSTRAK

Kajian ini memfokuskan potensi pemangkin K-impregnasi batu karang staghorn sebagai pemangkin dalam penghasilan metil ester melalui metanolisis sisa minyak masak (WCO). Pemangkin yang telah disediakan telah dianalisis oleh penunjuk Hammette, XRF, kaedah Brunauer-Emmett-Teller (BET)-penjerapan N2, ATR-FTIR, TGA, XRD dan SEM untuk menentukan sifat fiziokimianya. Keputusan ATR-FTIR dan XRD mengesahkan pembentukan spesies K2O apabila impregnasi KOH, sehingga menghasilkan aktiviti pemangkin yang baik. Parameter tindak balas seperti nisbah metanol kepada minyak, masa tindak balas dan jumlah pemangkin telah dinilai untuk mengetahui keadaan terbaik untuk proses transesterifikasi. Sebanyak 89.51 ± 4.78 % kandungan biodiesel telah diperoleh di bawah keadaan optimum.

 

Kata kunci: Batu karang staghorn; biodiesel; sisa minyak masak; transesterifikasi

REFERENCES

Attaphong, C., Do, L. & Sabatini, D. 2012. Vegetable oil-based microemulsions using carboxylate-based extended surfactants and their potential as an alternative renewable biofuel. Fuel 94: 606-613.

Bajpai, D. & Tyagi, V.K. 2006. Biodiesel: Source, production, composition, properties and its benefits. J. Oleo Sci. 55: 487-502.

Baroutian, S., Aroua, M.K., Raman, A.A.A. & Sulaiman, N.M.N. 2010. Potassium hydroxide catalyst supported on palm shell activated carbon for transesterification of palm oil. Fuel Process. Technol. 91: 1378-1385.

Bazargan, A., Kostic, M.D., Stamenkovic, O.S., Veljkovic, V.B. & McKay, G. 2015. A calcium oxide-based catalyst derived from palm kernel shell gasification residues for biodiesel production. Fuel 150: 519-525.

Birla, A., Singh, B., Upadhyay, S.N. & Sharma, Y.C. 2012. Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell. Bioresour. Technol. 106: 95-100.

Boey, P.L., Maniam, G.P., Hamid, S.A. & Ali, D.M.H. 2011. Crab and cockle shells as catalysts for the preparation of methyl esters from low free fatty acid chicken fat. J. Am. Oil Chem. Soc. 88: 283-288.

Boro, J., Konwar, L.J. & Deka, D. 2014. Transesterification of non-edible feedstock with lithium incorporated eggshell derived CaO for biodiesel production. Fuel Process. Technol. 122: 72-78.

Boro, J., Thakur, A.J. & Deka, D. 2011. Solid oxide derived from waste shells of Turbonilla striatula as a renewable catalyst for biodiesel production. Fuel Process. Technol. 92: 2061-2067.

Buasri, A., Chaiyut, N., Loryuenyong, V., Rodklum, C., Chaikwan, T., Kumphan, N., Jadee, K., Klinklom, P. & Wittayarounayut, W. 2012. Transesterification of waste frying oil for synthesizing biodiesel by KOH supported on coconut shell activated carbon in packed bed reactor. ScienceAsia 38: 283-288.

Canesin, E.A., Oliveira, C.C.D., Matsushita, M., Dias, L.F., Pedrao, M.R. & Souza, N.E.D. 2014. Characterization of residual oils for biodiesel production. Electron. J. Biotechnol. 17: 39-45.

Cetinkaya, M. & Karaosmanoglu, F. 2004. Optimization of base-catalyzed transesterification reaction of used cooking oil. Energy Fuels 18: 1888-1895.

Degirmenbasi, N., Coskun, S., Boz, N. & Kalyon, D.M. 2015. Biodiesel synthesis from canola oil via heterogeneous catalysis using functionalized CaO nanoparticles. Fuel 153: 620-627.

Demirbas, A. 2009. Progress and recent trends in biodiesel fuels. Energy Convers. Manage. 50: 14-34.

Eevera, T., Rajendran, K. & Saradha, S. 2009. Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions. Renew. Energy 34: 762-765.

Ekeoma, M.O., Okoye, P.A.C., Ajiwe, V.I.E. & Hameed, B.H. 2017. Murex turnispina shell as catalyst for bio-diesel production. Int. Res. J. Pure Appl. Chem. 14: 1-13.

Freedman, B., Pryde, E.H. & Mounts, T.L. 1984. Variables affecting the yields of fatty esters from transesterified vegetable oils. J. Am. Oil Chem. Soc. 61: 1638-1643.

Hassan, M.H. & Kalam, M.A. 2013. An overview of biofuel as a renewable energy source: Development and challenges. Procedia Eng. 56: 39-53.

Huang, D., Zhou, H. & Lin, L. 2012. Biodiesel: An alternative to conventional fuel. Energy Procedia 16: 1874-1885.

Javidialesaadi, A. & Raeissi, S. 2013. Biodiesel production from high free fatty acid-content oils: Experimental investigation of the pretreatment step. APCBEE Procedia. 5: 474-478.

Kabo, K.S., Yacob, A.R., Bakar, W.A.W.A., Buang, N.A., Bello, A.M. & Ruskam, A. 2015. BBD optimization of K-ZnO catalyst modification process for heterogeneous transesterification of rice bran oil to biodiesel. Soft Soil Engineering International Conference 2015 (SEIC2015). Langkawi, Malaysia. 012063.

Kahng, S.E., Garcia-Sais, J.R., Spalding, H.L., Brokovich, E., Wagner, D., Weil, E., Hinderstein, L. & Toonen, R.J. 2010. Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29: 255-275.

Kapilan, N., Babu, T.P.A. & Reddy, R.P. 2009. Technical aspects of biodiesel and its oxidation stability. Int. J. ChemTech Res. 1: 278-282.

Kataria, J., Mohapatra, S.K. & Kundu, K. 2017. Biodiesel production from frying oil using zinc-doped calcium oxide as heterogeneous catalysts. Energ. Source Part A 39: 861-866.

Kaur, M. & Ali, A. 2011. Lithium ion impregnated calcium oxide as nano catalyst for the bio-diesel production from karanja and jatropha oils. Renew. Energy 36: 2866-2871.

Kesic, Z., Lukic, I., Zdujic, M., Liu, H. & Skala, D. 2012. Mechanochemically synthesized CaO ZnO catalyst for biodiesel production. Procedia Eng. 42: 1169-1178.

Kumar, D. & Ali, A. 2012. Nanocrystalline K-CaO for the transesterification of a variety of feedstocks: Structure, kinetics and catalytic properties. Biomass Bioenergy 46: 459-468.

Lam, M.K., Lee, K.T. & Mohamed, A.R. 2010. Homogenous, heterogenous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnol. Adv. 28: 500-518.

Leung, D.Y.C. & Guo, Y. 2006. Transesterification of neat and used frying oil: Optimization for biodiesel production. Fuel Process. Technol. 87: 883-890.

Liu, H., Guo, H.S., Wang, X.J., Jiang, J.Z., Lin, H., Han, S. & Pei, S.P. 2016. Mixed and ground KBr-impregnated calcined snail shell and kaolin as solid base catalysts for biodiesel production. Renew. Energy 93: 648-657.

Ma, F. & Hanna, M.A. 1999. Biodiesel production: A review. Bioresour. Technol. 70: 1-15.

Mamat, F.M. & Yacob, A.R. 2015. Kinetic study of biodiesel using egg shell for base transesterification reaction: http://eprints.utm.my/id/eprint/62086/1/ ZainabRaml i2015_Modif iedDes i l icatedNat u r alZeoliteasCatalystinKnoevenagelReaction.pdf#page=75. Accessed on 15th September 2018.

Meher, L.C., Kulkarni, M.G., Dalai, A.K. & Naik, S.N. 2006. Transesterification of karanja (Pongamia pinnata) oil by solid basic catalysts. Eur. J. Lipid Sci. Technol. 108: 389-397.

Modiba, E., Enweremadu, C. & Rutto, H. 2015. Production of biodiesel from waste vegetable oil using impregnated diatomite as heterogeneous catalyst. Chin. J. Chem. 23: 281-289.

Moradi, G. & Mohammadi, F. 2014. Utilization of waste coral for biodiesel production via transesterification of soybean oil. Int. J. Environ. Sci. Technol. 11: 805-812.

Mutreja, V., Singh, S. & Ali, A. 2011. Biodiesel from mutton fat using KOH impregnated MgO as heterogeneous catalysts. Renew. Energy 36: 2253-2258.

Onukwuli, D.O., Emembolu, L.N., Ude, C.N., Aliozo, S.O. & Menkiti, M.C. 2017. Optimization of biodiesel production from refined cotton seed oil and its characterization. Egypt. J. Petrol. 26: 103-110.

Otadi, M., Shahraki, A., Goharrokhi, M. & Bandarchian, F. 2011. Reduction of free fatty acids of waste oil by acid-catalyzed esterification. Procedia Eng. 18: 168-174.

Pandolfi, J.M. & Jackson, J.B.C. 2006. Ecological persistence interrupted in Caribbean coral reefs. Eco. Lett. 9: 818-826.

Precht, W.F., Bruckner, A.W., Aronson, R.B. & Bruckner, R.J. 2002. Endangered acroporid corals of the Caribbean. Coral Reefs 21: 41-42.

Rajalingam, A., Jani, S.P., Kumar, A.S. & Khan, M.A. 2016. Production methods of biodiesel. J. Chem. Pharm. Res. 8: 170-173.

Roschat, W., Kacha, M., Yoosuk, B., Sudyoadsuk, T. & Promarak, V. 2012. Biodiesel production based on heterogeneous process catalyzed by solid waste coral fragment. Fuel 98: 194-202.

Ruiz, M.G., Hernandez, J., Banos, L., Montes, J.N. & Garcia, M.E.R. 2009. Characterization of calcium carbonate, calcium oxide, and calcium hydroxide as starting point to the improvement of lime for their use in construction. J. Mater. Civil Eng. 21: 694-698.

Saxena, P., Jawale, S. & Joshipura, M.H. 2013. A review on prediction of properties of biodiesel and blends of biodiesel. Procedia Eng. 51: 395-402.

Sharma, Y.C., Singh, B. & Korstad, J. 2010. Application of an efficient nonconventional heterogeneous catalyst for biodiesel synthesis from Pongamia pinnata oil. Energy Fuels 24: 3223-3231.

Shereena, K.M. & Thangaraj, T. 2009. Biodiesel: An alternative fuel produced from vegetable oils by transesterification. Electron. J. Bio. 5: 67-74.

Sinha, D. & Murugavelh, S. 2016. Biodiesel production from waste cotton seed oil using low cost catalyst: Engine performance and emission characteristics. Perspect. Sci. 8: 237-240.

Sirisomboonchai, S., Abuduwayiti, M., Guan, G., Samart, C., Abliz, S., Hao, X., Kusakabe, K. & Abudula, A. 2015. Biodiesel production from waste cooking oil using calcined scallop shell as catalyst. Energy Convers. Manage. 95: 242-247.

Suryaputra, W., Winata, I., Indraswati, N. & Ismadji, S. 2013. Waste capiz (Amusium cristatum) shell as a new heterogeneous catalyst for biodiesel production. Renew. Energy 50: 795-799.

Tan, Y.H., Abdullah, M.O., Nolasco-Hipolito, C. & Taufiq- Yap, Y.H. 2015. Waste ostrich- and chicken-egg shells as heterogeneous base catalyst for biodiesel production from used cooking oil: Catalyst characterization and biodiesel yield performance. Appl. Energy 160: 58-70.

Viriya-Empikul, N., Krasae, P., Nualpaeng, W., Yoosuk, B. & Faungnawakij, K. 2012. Biodiesel production over Ca-based solid catalysts derived from industrial wastes. Fuel 92: 239-244.

Watkins, R.S., Lee, A.F. & Wilson, K. 2004. Li-CaO catalysed tri-glyceride transesterification for biodiesel applications. Green Chem. 6: 335-340.

Wu, H., Zhang, J., Wei, Q., Zheng, J. & Zhang, J. 2013. Transesterification of soybean oil to biodiesel using zeolite supported CaO as strong base catalysts. Fuel Process. Technol. 109: 13-18.

Xie, W. & Huang, X. 2006. Synthesis of biodiesel from soybean oil using heterogeneous KF/ZnO catalyst. Catal. Lett. 107: 53-59.

Xie, W. & Li, H. 2006. Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oil. J. Mol. Catal. A Chem. 255: 1-9.

Yacob, A.R., Muda, N.W. & Zaki, M.A.M. 2017. Effect of one step activation KOH modified carbon in dimethyl carbonate transesterification reactions. Malaysian J. Anal. Sci. 21: 820-829.

Zhang, J. & Meng, Q. 2014. Preparation of KOH/CaO/C supported biodiesel catalyst and application process. World J. Eng. Technol. 2: 184-191.

Zielinski, J.M. & Kettle, L. 2013. Physical Characterization: Surface Area and Porosity. London: Intertek. p.1-5.

 

*Corresponding author; email: mhh@usm.my

 

 

 

previous