Sains Malaysiana 48(5)(2019):
1151–1156
http://dx.doi.org/10.17576/jsm-2019-4805-24
A Comparison of Asymptotic and Bootstrapping
Approach in Constructing Confidence Interval of the Concentration
Parameter in von Mises Distribution
(Perbandingan Pendekatan Asimptot dan Pembutstrapan dalam Membina Selang
Keyakinan Parameter Menumpu
bagi Taburan
von Mises)
NOR HAFIZAH
MOSLIM1,2,
YONG
ZULINA
ZUBAIRI3*,
ABDUL
GHAPOR
HUSSIN4,
SITI
FATIMAH
HASSAN3
& NURKHAIRANY AMYRA MOKHTAR4
1Institute of Graduate Studies, Universiti Malaya, 50603 Kuala Lumpur, Federal Territory,
Malaysia
2Faculty of Industrial Sciences &
Technology, Universiti Malaysia Pahang,
Lebuhraya Tun Razak,
26300 Gambang, Pahang Darul
Makmur, Malaysia
3Centre of Foundation Studies for Sciences,
University of Malaya, 50603 Kuala Lumpur, Federal Territory,
Malaysia
4Faculty of Defense Sciences and Technology,
National Defense University of Malaysia, Kem
Sungai Besi, 57000 Kuala Lumpur, Federal
Territory, Malaysia
Received: 23 September 2018/Accepted:
6 March 2019
ABSTRACT
Bootstrap is a resampling procedure
for estimating the distributions of statistics based on independent
observations. Basically, bootstrapping has been established
for the use of parameter estimation of linear data. Thus, the
used of bootstrap in confidence interval of the concentration
parameter, κ in von Mises distribution
which fitted the circular data is discussed in this paper. The
von Mises distribution is the ’natural’ analogue on the circle
of the Normal distribution on the real line and widely used
to describe circular variables. The distribution has two parameters,
namely mean direction, μ and concentration parameter, κ,
respectively. The confidence interval based on the calibration
bootstrap method will be compared with the existing method,
confidence interval based on the asymptotic to the distribution
of κ. Simulation
studies were conducted to examine the empirical performance
of the confidence intervals. Numerical results suggest the superiority of
the proposed method based on measures of coverage probability
and expected length. The confidence intervals were illustrated
using daily wind direction data recorded at maximum wind speed
for seven stations in Malaysia. From point estimates of the
concentration parameter and the respective confidence interval,
we note that the method works well for a wide range of κ
values. This study suggests that the method of obtaining the
confidence intervals can be applied with ease and provides good
estimates.
Keywords: Calibration bootstrap;
circular variable; concentration parameter; von Mises distribution
ABSTRAK
Kaedah pembutstrapan adalah proses persampelan semula data bagi menganggarkan taburan statistik berdasarkan pemerhatian bebas. Kebelakangan ini, kaedah pembutstrapan
telah digunakan
secara meluas untuk
menganggar parameter data linear.
Oleh itu,
dalam kajian ini, kami menggunakan kaedah pembutstrapan dalam membina selang keyakinan terhadap parameter menumpu, κ bagi taburan von Mises. Taburan von Mises
dikenali sebagai
taburan normal membulat dan ia merupakan
taburan yang menyerupai
taburan normal seperti yang biasa digunakan dalam statistik linear. Taburan ini mempunyai
dua parameter, iaitu
min berarah, μ dan parameter menumpu, κ. Selang keyakinan berdasarkan kaedah pembutstrapan penentukuran akan dibandingkan dengan kaedah sedia ada,
selang keyakinan
berdasarkan asimptotik κ. Kajian simulasi dan penilaian bagi
saiz selang
dan kebarangkalian menumpu telah dijalankan
bagi menilai
ketepatan empirik selang keyakinan tersebut. Kaedah ini diilustrasikan menggunakan data arah angin harian yang dirakamkan pada kelajuan angin maksimum bagi tujuh
stesen di Malaysia. Titik
penganggaran bagi parameter menumpu dan selang
keyakinan, masing-masing
menunjukkan kaedah pembutstrapan penentukuran ini berfungsi dengan
baik untuk
pelbagai nilai κ. Kajian ini menunjukkan
bahawa kaedah
mendapatkan selang keyakinan boleh digunakan dengan mudah dan memberikan
anggaran yang baik.
Kata kunci: Parameter menumpu; pemboleh ubah membulat; pembutstrapan penentukuran; taburan von Mises
REFERENCES
Best,
D.J. & Fisher, N.I. 1981. The
BIAS of the maximum likelihood estimators of the von Mises-Fisher
concentration parameters. Communication in Statistics-Simulation
and Computation 10(5): 493-502.
DiCiccio, T.J. & Efron,
B. 1996. Bootstrap
confidence interval. Statistical Science 11(3):
189-228.
Efron, B. & Tibshirani, R.J. 1993. An
Introduction to the Bootstrap. London: Chapman & Hall.
Efron, B. 1979. Bootstrap methods:
Another look at the jackknife. The Annals of Statistics
7(1): 1-26.
Fisher,
N. 1993. Statistical Analysis of Circular Data. Cambridge:
Cambridge University Press.
Fitak, R.R., Caves, E.M. & Johnsen, S. 2018. Orientation in pill bugs:
An interdisciplinary activity to engage students in concepts
of biology, physics & circular statistics. American Biology
Teacher 80(8): 608-618.
Hassan,
S.F., Hussin, A.G. & Zubairi,
Y.Z. 2012. Improved
efficient approximation of concentration parameter and confidence
interval for circular distribution. ScienceAsia
38(1): 118-124.
Hassan,
S.F., Zubairi, Y.Z., Hussin,
A.G. & Satari, S.Z. 2014. Some confidence intervals for large concentration parameter in von Mises
distribution. Pakistan Journal of Statistics 30(2):
273-284.
Jammalamadaka, S.R. & SenGupta, A. 2001. Topics in Circular Statistics. London:
World Scientific.
Khanabsakdi, S. 1996. Inferential statistics for concentration of directional data using the
chisquare distribution. The Philippine Statistician 44-45(1-8):
61-67.
Kucwaj, J.C., Reboul, S., Stienne,
G., Choquel, J.B. & Benjelloun,
M. 2017. Circular regression applied to GNSS-R phase altimetry.
Remote Sensing 9(7): 651.
Letson, D. & McCullough, B.D. 1998. Better confidence intervals: The double bootstrap
with no pivot. American Journal of Agricultural Economics
80(3): 552-559.
Loh, W.Y. 1991. Bootstrap calibration
for confidence interval construction and selection. Statistica Sinica 1(2):
477-491.
Lv, X., Zhang, G. & Xu, X. 2017. Bootstrap-calibrated empirical likelihood confidence intervals for the
difference between two Gini indexes. Journal of Economic
Inequality 15(2): 195-216.
Mardia, K.V. 1972. Statistics of Directional
Data. London: Academic Press.
Moslim, N.H., Zubairi,
Y.Z., Hussin, A.G., Hassan, S.F. &
Yunus, R.M. 2017. On the approximation of the concentration
parameter for von Mises distribution. Malaysian Journal of
Fundamental and Applied Science 13(4-1): 390-393.
Polo,
M.E., Pozo, M. & Quiros,
E. 2018. Circular statistics applied to the study of the solar
radiation potential of rooftops in a medium-sized city. Energies
11(10): 2813.
Satari, S.Z., Zubairi,
Y.Z., Hussin, A.G. & Hassan, S.F.
2015. Some statistical characteristic of Malaysian wind direction
recorded at maximum wind speed: 1999-2008. Sains
Malaysiana 44(10): 1521-1530.
Stephens,
M.A. 1969. A goodness-of-fit
statistic for the circle, with some comparisons. Biometrika
56(1): 161-168.
Stock,
H., van Emmerik, R., Wilson, C. &
Preatoni, E. 2018. Applying circular statistics can cause
artefacts in the calculation of vector coding variability: A
bivariate solution. Gait & Posture 65: 51-56.
Yan, L., Xiong, L.H., Liu, D.D., Hu, T.S. & Xu, C.Y. 2016. Frequency
analysis of nonstationary annual maximum flood series using
the time-varying two-component mixture distributions. Hydrology
Processes 31(1): 69-89.
*Corresponding author;
email: yzulina@um.edu.my