Sains Malaysiana 48(4)(2019): 877–885

http://dx.doi.org/10.17576/jsm-2019-4804-20

 

Membrane Electrode Assembly with High Efficiency and Stability: Effect of Solvent Type and Membrane Composition

(Pemasangan Elektrod Membran dengan Kecekapan dan Kestabilan yang Tinggi: Kesan Jenis Pelarut dan Komposisi Membran)

 

N. SABLI1,2*, N.A. ABU BAKAR1, S. IZHAR1 & H.S. HILAL3

 

1Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

2Institute of Advance Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

3SSERL, Department of Chemistry, An-Najah N. University, Nablus, West Bank, Palestine

 

Received: 22 June 2018/Accepted: 16 February 2019

 

ABSTRACT

Membrane electrode assembly (MEA) method is being widely considered in proton exchange membrane fuel cell (PEMFC) preparation. This work describes for the first time how PEMFC performance can be enhanced, while using relatively low temperature processing for the MEA, by choosing the suitable solvent and suitable ionomer (nafion) content. Three dispersion solvents (water, ethylene glycol and ethanol) have been examined here, and ethanol (with lowest boiling point) showed best PEMFC performance. In addition to its non-hazardous nature, the low boiling point ethanol allowed manufacturing the working membrane at 130°C or lower besides using a safe solvent to use. In each solvent system, different nafion concentrations were used (10%, 20% and 30%). The 30% nafion concentration in ethanol showed highest performance (Open circuit potential of 0.88 V and output working potential of 0.67 V at 20 mA/cm2 current density) among the series. The anode and cathode, of the MEA, were both fabricated using same catalyst material (Platinum) and same nafion sheet thickness (50 μm). The spray method was employed. The electrochemical performance for the prepared MEA fuel cells was assessed by linear sweep voltammetry to evaluate the open circuit voltage.

 

Keywords: Dispersion solvent; hydrogen fuel cell; MEA; nafion ionomer

 

ABSTRAK

Kaedah pemasangan elektrod membran (MEA) dipertimbangkan secara meluas dalam penyediaan sel bahan bakar membran sel proton (PEMFC). Kajian ini menerangkan buat kali pertama bagaimana prestasi PEMFC dapat dipertingkatkan semasa memproses MEA pada suhu yang rendah dengan memilih pelarut dan kandungan ionomer (nafion) yang sesuai. Tiga pelarut penyebaran (air, etilena glikol dan etanol) telah diperiksa. Etanol (takat didih terendah) didapati menunjukkan prestasi PEMFC yang terbaik. Tambahan pula sifat etanol yang tidak berbahaya, takat didih yang rendah membolehkan pembuatan membran pada suhu 130°C atau lebih rendah dapat dilaksanakan di samping ia juga pelarut yang selamat untuk digunakan. Dalam setiap sistem pelarut, kepekatan nafion berbeza digunakan (10%, 20% dan 30%). Kepekatan 30% nafion dalam etanol menunjukkan prestasi tertinggi (potensi litar terbuka 0.88 V dan potensi kerja output 0.67 V pada kepadatan arus 20 mA /cm2) antara siri ini. Anod dan katod pada MEA, kedua-duanya difabrikasi menggunakan bahan pemangkin yang sama (Platinum) dan ketebalan lembaran nafion yang sama (50 μm). Kaedah semburan telah digunakan. Prestasi elektrokimia untuk sel bahan bakar MEA diukur menggunakan voltammetri menyapu linear untuk menilai voltan litar terbuka.

 

Kata kunci: MEA; nafion ionomer; pelarut penyebaran; sel bahan api hidrogen

REFERENCES

Antolini, E., Giorgi, L., Pozio, A. & Passalacqua, E. 1999. Influence of nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC. Journal of Power Sources 77(2): 136-142.

Cho, H.J., Jang, H., Lim, S., Cho, E., Lim, T.H., Oh, I.H. & Jang, J.H. 2011. Development of a novel decal transfer process for fabrication of high-performance and reliable membrane electrode assemblies for PEMFCs. International Journal of Hydrogen Energy 36(19): 12465-12473.

De Heer, M.P. & De Bruijn, F.A. 2007. U.S. Patent No. 7,186,665. Washington, DC: U.S. Patent and Trademark Office.

Eguchi, M., Baba, K., Onuma, T., Yoshida, K., Iwasawa, K., Kobayashi, Y. & Ando, T. 2012. Influence of ionomer/carbon ratio on the performance of a polymer electrolyte fuel cell. Polymers 4(4): 1645-1656.

Elham, A. & Mehrnoosh, K. 2014. 7th Iranian Fuel Cell Seminar. p. 462. http://www.sid.ir/en/VEWSSID/s_ pdf/197e2014h0711.pdf.

Frey, T. & Linardi, M. 2004. Effects of membrane electrode assembly preparation on the polymer electrolyte membrane fuel cell performance. Electrochimica Acta 50(1): 99-105.

He, C., Desai, S., Brown, G. & Bollepalli, S. 2005. PEM fuel cell catalysts: Cost, performance, and durability. Interface- Electrochemical Society 14(3): 41-46.

Holton, O.T. & Stevenson, J.W. 2013. The role of platinum in proton exchange membrane fuel cells. Platinum Metals Review 57(4): 259-271.

Huang, D.C., Yu, P.J., Liu, F.J., Huang, S.L., Hsueh, K.L., Chen, Y.C. & Tsau, F.H. 2011. Effect of dispersion solvent in catalyst ink on proton exchange membrane fuel cell performance. Int. J. Electrochem. Sci. 6(7): 2551-2565.

Izhar, S. & Nagai, M. 2008. Cobalt molybdenum carbides as anode electrocatalyst for proton exchange membrane fuel cell. Journal of Power Sources 182(1): 52-60.

Jao, T.C., Jung, G.B., Shen, H.L., Yeh, C.C. & Su, Y.J. 2013. Ultrasonic spray coating for proton exchange membrane fuel cell. Open Journal of Acoustics 3: 33-37.

Kilner, J.A., Skinner, S.J., Irvine, S.J.C. & Edwards, P.P. 2012. Functional Materials for Sustainable Energy Applications. Cambridge: Woodhead Publishing.

Köhler, J. & Bänisch, V. 2005. U.S. Patent No. 6,844,286. Washington, DC: U.S. Patent and Trademark Office.

Kulkarni, N.P. 2011. Design and development of manufacturing methods for manufacturing of PEM fuel cell MEA’s. Master Thesis. Missouri University of Science and Technology (Unpublished).

Kwak, S.H., Peck, D.H., Chun, Y.G., Kim, C.S. & Yoon, K.H. 2001. New fabrication method of the composite membrane for polymer electrolyte membrane fuel cell. Journal of New Materials for Electrochemical Systems 4(1): 25-30.

Lin, J.C., Kunz, H.R., Fenton, J.M. & Fenton, S.S. 2003. The fuel cell-An ideal chemical engineering undergraduate experiment. Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition. pp. 1-12.

Material Safety Data Sheet Ethylene glycol (MSDS). 2017. http:// www.sciencelab.com/msds.php?msdsId=9927167.

Mehmood, A. & Ha, H.Y. 2013. Parametric investigation of a high-yield decal technique to fabricate membrane electrode assemblies for direct methanol fuel cells. International Journal of Hydrogen Energy 38(28): 12427-12437.

Mehta, V. & Cooper, J.S. 2003. Review and analysis of PEM fuel cell design and manufacturing. Journal of Power Sources 114(1): 32-53.

Mench, M.M. 2008. Performance characterization of fuel cell systems. In Fuel Cell Engines. New York: John Wiley & Sons. pp. 121-190.

Park, I.S., Li, W. & Manthiram, A. 2010. Fabrication of catalyst-coated membrane-electrode assemblies by doctor blade method and their performance in fuel cells. Journal of Power Sources 195(20): 7078-7082.

Passalacqua, E., Lufrano, F., Squadrito, G., Patti, A. & Giorgi, L. 2001. Nafion content in the catalyst layer of polymer electrolyte fuel cells: Effects on structure and performance. Electrochimica Acta 46(6): 799-805.

Ranney, C. 2008. Effects of temperature and solvent activity on the viscoelastic response of Nafion for PEM fuel cells. Chemical Engineering. Princeton: Princeton University. pp. 1-62.

Saha, M.S., Paul, D.K., Peppley, B.A. & Karan, K. 2010. Fabrication of catalyst-coated membrane by modified decal transfer technique. Electrochemistry Communications 12(3): 410-413.

Song, W., Yu, H., Hao, L., Miao, Z., Yi, B. & Shao, Z. 2010. A new hydrophobic thin film catalyst layer for PEMFC. Solid State Ionics 181(8-10): 453-458.

Taylor, A.D., Kim, E.Y., Humes, V.P., Kizuka, J. & Thompson, L.T. 2007. Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells. Journal of Power Sources 171(1): 101-106.

Thanasilp, S. & Hunsom, M. 2010. Effect of MEA fabrication techniques on the cell performance of Pt-Pd/C electrocatalyst for oxygen reduction in PEM fuel cell. Fuel 89(12): 3847- 3852.

Ticianelli, E.A., Derouin, C.R., Redondo, A. & Srinivasan, S. 1988. Methods to advance technology of proton exchange membrane fuel cells. Journal of the Electrochemical Society 135(9): 2209-2214.

Yang, C., Srinivasan, S., Bocarsly, A.B., Tulyani, S. & Benziger, J.B. 2004. A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes. Journal of Membrane Science 237(1- 2): 145-161.

Yang, T.H., Yoon, Y.G., Park, G.G., Lee, W.Y. & Kim, C.S. 2004. Fabrication of a thin catalyst layer using organic solvents. Journal of Power Sources 127(1-2): 230-233.

Yudianti, R., Onggo, H. & Syampurwadi, A. 2014. Molecular conformation of Nafion ionomer on electrocatalyst layer prepared by screen printing technique. Int. J. Electrochem. Sci. 9: 3047-3059.

Zhang, J. 2008. Springer Science Business Media, 1.

 

*Corresponding author; email: nordin_sab@upm.edu.my

 

 

 

previous