Sains Malaysiana 48(4)(2019): 877–885
http://dx.doi.org/10.17576/jsm-2019-4804-20
Membrane Electrode Assembly with High
Efficiency and Stability: Effect of Solvent Type and Membrane Composition
(Pemasangan Elektrod Membran dengan Kecekapan dan
Kestabilan yang Tinggi: Kesan Jenis Pelarut dan Komposisi Membran)
N. SABLI1,2*, N.A. ABU BAKAR1, S. IZHAR1 & H.S. HILAL3
1Department of Chemical
and Environmental Engineering, Faculty of Engineering, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
2Institute of Advance
Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul
Ehsan, Malaysia
3SSERL, Department of
Chemistry, An-Najah N. University, Nablus, West Bank, Palestine
Received:
22 June 2018/Accepted: 16 February 2019
ABSTRACT
Membrane electrode assembly (MEA)
method is being widely considered in proton exchange membrane fuel cell (PEMFC)
preparation. This work describes for the first time how PEMFC performance
can be enhanced, while using relatively low temperature processing for the MEA,
by choosing the suitable solvent and suitable ionomer (nafion) content. Three
dispersion solvents (water, ethylene glycol and ethanol) have been examined
here, and ethanol (with lowest boiling point) showed best PEMFC performance. In addition to its non-hazardous nature, the low boiling point ethanol
allowed manufacturing the working membrane at 130°C or lower besides using a
safe solvent to use. In each solvent system, different nafion concentrations were
used (10%, 20% and 30%). The 30% nafion concentration in ethanol showed highest
performance (Open circuit potential of 0.88 V and output working potential of
0.67 V at 20 mA/cm2 current density) among the series.
The anode and cathode, of the MEA, were both fabricated using
same catalyst material (Platinum) and same nafion sheet thickness (50 μm).
The spray method was employed. The electrochemical performance for the prepared MEA fuel cells was assessed by linear sweep voltammetry to evaluate
the open circuit voltage.
Keywords: Dispersion solvent;
hydrogen fuel cell; MEA; nafion ionomer
ABSTRAK
Kaedah pemasangan elektrod membran (MEA)
dipertimbangkan secara meluas dalam penyediaan sel bahan bakar membran sel
proton (PEMFC). Kajian ini menerangkan buat kali pertama
bagaimana prestasi PEMFC dapat dipertingkatkan semasa
memproses MEA pada suhu yang rendah dengan memilih pelarut dan
kandungan ionomer (nafion) yang sesuai. Tiga pelarut penyebaran (air, etilena
glikol dan etanol) telah diperiksa. Etanol (takat didih terendah) didapati
menunjukkan prestasi PEMFC yang terbaik. Tambahan pula
sifat etanol yang tidak berbahaya, takat didih yang rendah membolehkan
pembuatan membran pada suhu 130°C atau lebih rendah dapat dilaksanakan di
samping ia juga pelarut yang selamat untuk digunakan. Dalam setiap sistem
pelarut, kepekatan nafion berbeza digunakan (10%, 20% dan 30%). Kepekatan 30%
nafion dalam etanol menunjukkan prestasi tertinggi (potensi litar terbuka 0.88
V dan potensi kerja output 0.67 V pada kepadatan arus 20 mA /cm2)
antara siri ini. Anod dan katod pada MEA, kedua-duanya difabrikasi
menggunakan bahan pemangkin yang sama (Platinum) dan ketebalan lembaran nafion
yang sama (50 μm). Kaedah semburan telah digunakan. Prestasi elektrokimia
untuk sel bahan bakar MEA diukur menggunakan voltammetri
menyapu linear untuk menilai voltan litar terbuka.
Kata
kunci: MEA; nafion ionomer; pelarut penyebaran;
sel bahan api hidrogen
REFERENCES
Antolini, E., Giorgi, L., Pozio, A. &
Passalacqua, E. 1999. Influence of nafion loading in the catalyst layer of
gas-diffusion electrodes for PEFC. Journal of Power Sources 77(2):
136-142.
Cho, H.J., Jang, H., Lim, S., Cho, E.,
Lim, T.H., Oh, I.H. & Jang, J.H. 2011. Development of a novel decal
transfer process for fabrication of high-performance and reliable membrane
electrode assemblies for PEMFCs. International Journal of Hydrogen Energy 36(19):
12465-12473.
De Heer, M.P. & De Bruijn, F.A. 2007. U.S. Patent No. 7,186,665. Washington, DC: U.S. Patent and Trademark
Office.
Eguchi, M., Baba, K., Onuma, T., Yoshida,
K., Iwasawa, K., Kobayashi, Y. & Ando, T. 2012. Influence of ionomer/carbon
ratio on the performance of a polymer electrolyte fuel cell. Polymers 4(4):
1645-1656.
Elham, A. & Mehrnoosh, K. 2014. 7th
Iranian Fuel Cell Seminar. p. 462. http://www.sid.ir/en/VEWSSID/s_
pdf/197e2014h0711.pdf.
Frey, T. & Linardi, M. 2004. Effects
of membrane electrode assembly preparation on the polymer electrolyte membrane
fuel cell performance. Electrochimica Acta 50(1): 99-105.
He, C., Desai, S., Brown, G. &
Bollepalli, S. 2005. PEM fuel cell catalysts: Cost, performance, and
durability. Interface- Electrochemical Society 14(3): 41-46.
Holton, O.T. & Stevenson, J.W. 2013.
The role of platinum in proton exchange membrane fuel cells. Platinum Metals
Review 57(4): 259-271.
Huang, D.C., Yu, P.J., Liu, F.J., Huang,
S.L., Hsueh, K.L., Chen, Y.C. & Tsau, F.H. 2011. Effect of dispersion
solvent in catalyst ink on proton exchange membrane fuel cell performance. Int.
J. Electrochem. Sci. 6(7): 2551-2565.
Izhar, S. & Nagai, M. 2008. Cobalt
molybdenum carbides as anode electrocatalyst for proton exchange membrane fuel
cell. Journal of Power Sources 182(1): 52-60.
Jao, T.C., Jung, G.B., Shen, H.L., Yeh,
C.C. & Su, Y.J. 2013. Ultrasonic spray coating for proton exchange membrane
fuel cell. Open Journal of Acoustics 3: 33-37.
Kilner, J.A., Skinner, S.J., Irvine,
S.J.C. & Edwards, P.P. 2012. Functional Materials for Sustainable Energy
Applications. Cambridge: Woodhead Publishing.
Köhler, J. & Bänisch, V. 2005. U.S.
Patent No. 6,844,286. Washington, DC: U.S. Patent and Trademark Office.
Kulkarni, N.P. 2011. Design and
development of manufacturing methods for manufacturing of PEM fuel cell MEA’s.
Master Thesis. Missouri University of Science and Technology (Unpublished).
Kwak, S.H., Peck, D.H., Chun, Y.G., Kim,
C.S. & Yoon, K.H. 2001. New fabrication method of the composite membrane
for polymer electrolyte membrane fuel cell. Journal of New Materials for
Electrochemical Systems 4(1): 25-30.
Lin, J.C., Kunz, H.R., Fenton, J.M. &
Fenton, S.S. 2003. The fuel cell-An ideal chemical engineering undergraduate
experiment. Proceedings of the 2003 American Society for Engineering
Education Annual Conference & Exposition. pp. 1-12.
Material Safety Data Sheet Ethylene
glycol (MSDS). 2017. http:// www.sciencelab.com/msds.php?msdsId=9927167.
Mehmood, A. & Ha, H.Y. 2013.
Parametric investigation of a high-yield decal technique to fabricate membrane
electrode assemblies for direct methanol fuel cells. International Journal
of Hydrogen Energy 38(28): 12427-12437.
Mehta, V. & Cooper, J.S. 2003. Review
and analysis of PEM fuel cell design and manufacturing. Journal of Power
Sources 114(1): 32-53.
Mench, M.M. 2008. Performance
characterization of fuel cell systems. In Fuel Cell Engines. New York:
John Wiley & Sons. pp. 121-190.
Park, I.S., Li, W. & Manthiram, A.
2010. Fabrication of catalyst-coated membrane-electrode assemblies by doctor
blade method and their performance in fuel cells. Journal of Power Sources 195(20):
7078-7082.
Passalacqua, E., Lufrano, F., Squadrito,
G., Patti, A. & Giorgi, L. 2001. Nafion content in the catalyst layer of
polymer electrolyte fuel cells: Effects on structure and performance. Electrochimica
Acta 46(6): 799-805.
Ranney, C. 2008. Effects of temperature
and solvent activity on the viscoelastic response of Nafion for PEM fuel cells. Chemical Engineering. Princeton: Princeton University. pp. 1-62.
Saha, M.S., Paul, D.K., Peppley, B.A.
& Karan, K. 2010. Fabrication of catalyst-coated membrane by modified decal
transfer technique. Electrochemistry Communications 12(3): 410-413.
Song, W., Yu, H., Hao, L., Miao, Z., Yi,
B. & Shao, Z. 2010. A new hydrophobic thin film catalyst layer for PEMFC. Solid
State Ionics 181(8-10): 453-458.
Taylor, A.D., Kim, E.Y., Humes, V.P.,
Kizuka, J. & Thompson, L.T. 2007. Inkjet printing of carbon supported
platinum 3-D catalyst layers for use in fuel cells. Journal of Power Sources 171(1): 101-106.
Thanasilp, S. & Hunsom, M. 2010.
Effect of MEA fabrication techniques on the cell performance of Pt-Pd/C
electrocatalyst for oxygen reduction in PEM fuel cell. Fuel 89(12):
3847- 3852.
Ticianelli, E.A., Derouin, C.R., Redondo,
A. & Srinivasan, S. 1988. Methods to advance technology of proton exchange
membrane fuel cells. Journal of the Electrochemical Society 135(9):
2209-2214.
Yang, C., Srinivasan, S., Bocarsly, A.B.,
Tulyani, S. & Benziger, J.B. 2004. A comparison of physical properties and
fuel cell performance of Nafion and zirconium phosphate/Nafion composite
membranes. Journal of Membrane Science 237(1- 2): 145-161.
Yang, T.H., Yoon, Y.G., Park, G.G., Lee,
W.Y. & Kim, C.S. 2004. Fabrication of a thin catalyst layer using organic
solvents. Journal of Power Sources 127(1-2): 230-233.
Yudianti, R., Onggo, H. & Syampurwadi,
A. 2014. Molecular conformation of Nafion ionomer on electrocatalyst
layer prepared by screen printing technique. Int. J. Electrochem.
Sci. 9: 3047-3059.
Zhang, J. 2008. Springer Science Business
Media, 1.
*Corresponding author; email:
nordin_sab@upm.edu.my