Sains Malaysiana 48(6)(2019): 1187–1194
http://dx.doi.org/10.17576/jsm-2019-4806-05
Effect of Reaction Time
and Catalyst Feed Rate towards Carbon Nanotubes Yields and Purity by Using
Rotary Reactor
(Kesan Tindak Balas
Masa dan Kadar Suapan Pemangkin ke Arah Hasil dan Ketulenan Karbon Nanotiub
dengan Menggunakan Reaktor Putar)
RABITA FIRDAUS, NUR SYAHIDAH AFANDI, MEHRNOUSH KHAVARIAN
& ABDUL RAHMAN MOHAMED*
School
of Chemical Engineering, Universiti Sains Malaysia, 14300 NIibong Tebal, Pulau
Pinang, Malaysia
Received:
13 August 2018/Accepted: 3 December 2018
ABSTRACT
Continuous production
of multi-walled carbon nanotubes (MWCNTs) by chemical vapor
deposition (CVD) method was investigated in a rotary reactor. The aim
of the study was to investigate the effect of catalyst feeding rate and
reaction time on the MWCNTs production yield and purity.
Bimetallic Co-Mo supported on MgO was used for the growth of MWCNTs
and methane gas was used as the carbon precursor. The results indicated that
the highest yield of MWCNTs production was attained at the
reaction time of 180 min and catalyst feeding rate of 100 mg/min; this sample
also had the highest purity (99.16%). SEM and TEM analyses
of the synthesized product confirmed that most of the MWCNTs
were sinuous and entangled with a uniform diameter. Raman spectroscopy
indicated that the as-produced MWCNTs were mostly graphitic
with few disordered carbon and impurities. The results highlighted that
synthesized MWCNTs were highly pure which eliminates the need for MWCNTs
purification process.
Keywords: Carbon
nanotubes; catalyst feed rate; chemical vapor deposition (CVD);
reaction time
ABSTRAK
Pengeluaran tiub nano
karbon berbilang dinding (MWCNTs) secara berterusan melalui
proses penguraian wap bermangkin (CVD) telah dijalankan dalam
sebuah reaktor berputar. Tujuan kajian ini adalah untuk mengkaji kesan kadar
kemasukan pemangkin dan kadar masa reaksi terhadap hasil pengeluaran MWCNTs
dan ketulenan. Gabungan dwi logam Co-Mo tersokong di atas MgO telah digunakan
untuk pertumbuhan MWCNTs dan gas metana digunakan
sebagai prekursor karbon. Keputusan menunjukkan bahawa pengeluaran tertinggi
pengeluaran MWCNTs dicapai pada kadar masa reaksi 180 min dan kadar
kemasukan pemangkin 100 mg/min; sampel ini juga berketulenan tinggi (99.16%).
Analisis SEM dan TEM terhadap produk yang
disintesis itu mengesahkan bahawa kebanyakan MWCNTs
adalah bergabung dan terikat dengan diameter seragam. Spektroskopi Raman
menunjukkan bahawa MWCNTs yang dihasilkan kebanyakannya
adalah grafit dengan sedikit karbon dan bendasing. Keputusan menunjukkan bahawa MWCNTs
yang disintesis adalah sangat tulen dan tidak memerlukan proses penulenan MWCNTs.
Kata kunci: Kadar kemasukan pemangkin; kadar masa reaksi; karbon
nanotiub; penguraian wap bermangkin
REFERENCES
Calizo,
I., Wenzhong, B., Miao, F., Jeanie, L. & Alexander, B. 2007. The effect of
substrates on the Raman spectrum of graphene: Graphene on-sapphire and graphene-on-glass. Applied Physics Letters 91: 201904.
Chaudhary,
K.T., Rizvi, Z.H., Bhatti, K.A., Ali, J. & Yupapin, P.P. 2013. Multiwalled
carbon nanotube synthesis using arc discharge with hydrocarbon as feedstock. Journal
of Nanomaterials 2013: 105145.
Dündar-Tekkaya,
E. & Karatepe, N. 2015. Effect of reaction time, weight ratio, and type of
catalyst on the yield of single-wall carbon nanotubes synthesized by chemical
vapor deposition of acetylene. Fullerenes, Nanotubes and Carbon
Nanostructures 23(6): 535-541.
Gulino,
G., Vieira, R., Amadou, J., Nguyen, P., Ledoux, M.J., Galvagno, S., Centi, G.
& Pham-Huu, C. 2005. C2H6 as an active carbon source for a large scale
synthesis of carbon nanotubes by chemical vapour deposition. Applied
Catalysis A: General 279(1-2): 89-97.
Hamedani,
Y., Macha, P., Bunning, T.J., Naik, R.R. & Vasudev, M.C. 2016.
Plasma-enhanced chemical vapor deposition: Where we are and the outlook for the
future. In Chemical Vapor Deposition - Recent Advances and Applications in
Optical, Solar Cells and Solid State Devices, edited by Sudheer Neralla,
Ch. 10. Rijeka: InTech.
Hu, Y.
& Guo, C. 2011. Carbon nanotubes and carbon nanotubes/ metal oxide
heterostructures: Synthesis, characterization and electrochemical property. In Carbon
Nanotubes - Growth and Applications doi: 10.5772/16463.
Jafari,
A., Ghoranneviss, M. & Hantehzadeh, M.R. 2015. Morphology control of
graphene by LPCVD. Journal of Fusion Energy 34(3): 532-539.
Kamalakar,
G., Hwang, D.W. & Hwang, L.P. 2002. Synthesis and characterization of
multiwalled carbon nanotubes produced using zeolite Co-beta. Journal of
Materials Chemistry 12(6): 1819-1823.
Kharlamova,
M.V. 2017. Investigation of growth dynamics of carbon nanotubes. Beilstein
Journal of Nanotechnology 8: 826-856.
Larrude,
D.G., Ayala, P., da Costa, M.E.H. &. Freire, F.L. 2012. Multiwalled
carbon nanotubes decorated with cobalt oxide nanoparticles. Journal
of Nanomaterials 2012: Article ID. 695453.
Lu, X.,
Yim, W.L., Suryanto, B.H.R. & Zhao, C. 2015. Electrocatalytic oxygen
evolution at surface-oxidized multiwall carbon nanotubes. Journal of the
American Chemical Society 137(8): 2901-2907.
Mageswari,
S., Ahamed, A.J. & Karthikeyan. S. 2014. Effect of temperature and flow
rate on the yield of multi-walled carbon nanotubes by spray pyrolysis using
cymbopogen flexuous oil. J. Environ. Nanotechnol. 1(1): 28-31.
Mehra,
N.K., Jain, K. & Kumar, N.J. 2015. Pharmaceutical and biomedical
applications of surface engineered carbon nanotubes. Drug Discovery Today 20(6):
750-759.
Ming,
H., Peiling, D., Yunlong, Z., Jing, G. & Xiaoxue, R. 2016. Effect
of reaction temperature on carbon yield and morphology of CNTs on
copper loaded nickel nanoparticles. Journal of Nanomaterials
2016: Article ID. 8106845.
Monthioux,
M. 2011. Introduction to carbon nanotubes. In Carbon Meta-Nanotubes.
United Kingdom:: John Wiley & Sons, Ltd. pp. 7-39.
Peng,
K., Wan, Y.J., Ren, D.Y., Zeng, Q.W. & Tang, L.C. 2014. Scalable
preparation of multiscale carbon nanotube/glass fiber reinforcements and their
application in polymer composites. Fibers and Polymers 15(6): 1242-1250.
Qu, X.,
Pedro, J.J.A. & Li, Q. 2013. Applications of nanotechnology in water and
wastewater treatment. Water Research 47(12): 3931-3946.
Rouleau,
C.M., Tian, M., Puretzky, A.A., Mahjouri-Samani, M., Duscher, G. & Geohegan,
D.B. 2014. Catalytic nanoparticles for carbon nanotube growth synthesized by
through thin film femtosecond laser ablation. Proc. of SPIE 8969:
896907.
Shukrullah,
S., Mohamed, N.M., Shaharun, M.S. & Naz, M.Y. 2016. Effect of ethylene flow
rate and CVD process time on diameter distribution of MWCNTs. Materials and
Manufacturing Processes 31(12): 1537-1542.
Sridhar,
S., Ge, L., Tiwary, C.S., Hart, A.C., Ozden, S., Kalaga, K., Lei, S., Sridhar,
S.V., Sinha, R.K., Harsh, H., Kordas, K., Ajayan, P.M. & Vajtai, R. 2014.
Enhanced field emission properties from CNT arrays synthesized on inconel
superalloy. ACS Applied Materials & Interfaces 6(3): 1986-1991.
Tran,
T.Q., Fan, Z., Liu, P., Sandar, M.M. & Duong, H.M. 2016. Super-strong and
highly conductive carbon nanotube ribbons from post-treatment methods. Carbon 99: 407-415.
Vilatela,
J.J., Rabanal, M., Cervantes-Sodi, F., García-Ruiz, M., Jiménez-Rodríguez,
J.A., Reiband, G. & Terrones, M. 2015. A spray pyrolysis method to grow
carbon nanotubes on carbon fibres, steel and ceramic bricks. Journal of
Nanoscience and Nanotechnology 15: 2858-2864.
Yeoh,
W.M., Lee, K.T., Abdul, Mohamed. & Siang-Piao, C. 2012. Production of
carbon nanotubes from chemical vapor deposition of methane in a continuous
rotary reactor system. Chemical Engineering Communications 199(5):
600-607.
Yoon,
D. & Hyeonsik, C. 2012. Raman spectroscopy for characterization of
graphene. In Raman Spectroscopy for Nanomaterials Characterization,
edited by Challa, S.S.R.K. Berlin, Heidelberg: Springer Berlin Heidelberg. pp.
191-214.
Zhang,
Q., Huang, J.Q., Qian, W.Z., Zhang, Y.Y. & Fei, W. 2013. The road for
nanomaterials industry: A review of carbon nanotube production, post-treatment,
and bulk applications for composites and energy storage. Small 9(8):
1237-1265.
*Corresponding author; email: chrahman@usm.my
|