Sains Malaysiana 48(6)(2019): 1187–1194

http://dx.doi.org/10.17576/jsm-2019-4806-05

 

Effect of Reaction Time and Catalyst Feed Rate towards Carbon Nanotubes Yields and Purity by Using Rotary Reactor

(Kesan Tindak Balas Masa dan Kadar Suapan Pemangkin ke Arah Hasil dan Ketulenan Karbon Nanotiub dengan Menggunakan Reaktor Putar)

 

RABITA FIRDAUS, NUR SYAHIDAH AFANDI, MEHRNOUSH KHAVARIAN & ABDUL RAHMAN MOHAMED*

 

School of Chemical Engineering, Universiti Sains Malaysia, 14300 NIibong Tebal, Pulau Pinang, Malaysia

 

Received: 13 August 2018/Accepted: 3 December 2018

 

ABSTRACT

Continuous production of multi-walled carbon nanotubes (MWCNTs) by chemical vapor deposition (CVD) method was investigated in a rotary reactor. The aim of the study was to investigate the effect of catalyst feeding rate and reaction time on the MWCNTs production yield and purity. Bimetallic Co-Mo supported on MgO was used for the growth of MWCNTs and methane gas was used as the carbon precursor. The results indicated that the highest yield of MWCNTs production was attained at the reaction time of 180 min and catalyst feeding rate of 100 mg/min; this sample also had the highest purity (99.16%). SEM and TEM analyses of the synthesized product confirmed that most of the MWCNTs were sinuous and entangled with a uniform diameter. Raman spectroscopy indicated that the as-produced MWCNTs were mostly graphitic with few disordered carbon and impurities. The results highlighted that synthesized MWCNTs were highly pure which eliminates the need for MWCNTs purification process.

 

Keywords: Carbon nanotubes; catalyst feed rate; chemical vapor deposition (CVD); reaction time

 

ABSTRAK

Pengeluaran tiub nano karbon berbilang dinding (MWCNTs) secara berterusan melalui proses penguraian wap bermangkin (CVD) telah dijalankan dalam sebuah reaktor berputar. Tujuan kajian ini adalah untuk mengkaji kesan kadar kemasukan pemangkin dan kadar masa reaksi terhadap hasil pengeluaran MWCNTs dan ketulenan. Gabungan dwi logam Co-Mo tersokong di atas MgO telah digunakan untuk pertumbuhan MWCNTs dan gas metana digunakan sebagai prekursor karbon. Keputusan menunjukkan bahawa pengeluaran tertinggi pengeluaran MWCNTs dicapai pada kadar masa reaksi 180 min dan kadar kemasukan pemangkin 100 mg/min; sampel ini juga berketulenan tinggi (99.16%). Analisis SEM dan TEM terhadap produk yang disintesis itu mengesahkan bahawa kebanyakan MWCNTs adalah bergabung dan terikat dengan diameter seragam. Spektroskopi Raman menunjukkan bahawa MWCNTs yang dihasilkan kebanyakannya adalah grafit dengan sedikit karbon dan bendasing. Keputusan menunjukkan bahawa MWCNTs yang disintesis adalah sangat tulen dan tidak memerlukan proses penulenan MWCNTs.

 

Kata kunci: Kadar kemasukan pemangkin; kadar masa reaksi; karbon nanotiub; penguraian wap bermangkin

REFERENCES

Calizo, I., Wenzhong, B., Miao, F., Jeanie, L. & Alexander, B. 2007. The effect of substrates on the Raman spectrum of graphene: Graphene on-sapphire and graphene-on-glass. Applied Physics Letters 91: 201904.

Chaudhary, K.T., Rizvi, Z.H., Bhatti, K.A., Ali, J. & Yupapin, P.P. 2013. Multiwalled carbon nanotube synthesis using arc discharge with hydrocarbon as feedstock. Journal of Nanomaterials 2013: 105145.

Dündar-Tekkaya, E. & Karatepe, N. 2015. Effect of reaction time, weight ratio, and type of catalyst on the yield of single-wall carbon nanotubes synthesized by chemical vapor deposition of acetylene. Fullerenes, Nanotubes and Carbon Nanostructures 23(6): 535-541.

Gulino, G., Vieira, R., Amadou, J., Nguyen, P., Ledoux, M.J., Galvagno, S., Centi, G. & Pham-Huu, C. 2005. C2H6 as an active carbon source for a large scale synthesis of carbon nanotubes by chemical vapour deposition. Applied Catalysis A: General 279(1-2): 89-97.

Hamedani, Y., Macha, P., Bunning, T.J., Naik, R.R. & Vasudev, M.C. 2016. Plasma-enhanced chemical vapor deposition: Where we are and the outlook for the future. In Chemical Vapor Deposition - Recent Advances and Applications in Optical, Solar Cells and Solid State Devices, edited by Sudheer Neralla, Ch. 10. Rijeka: InTech.

Hu, Y. & Guo, C. 2011. Carbon nanotubes and carbon nanotubes/ metal oxide heterostructures: Synthesis, characterization and electrochemical property. In Carbon Nanotubes - Growth and Applications doi: 10.5772/16463.

Jafari, A., Ghoranneviss, M. & Hantehzadeh, M.R. 2015. Morphology control of graphene by LPCVD. Journal of Fusion Energy 34(3): 532-539.

Kamalakar, G., Hwang, D.W. & Hwang, L.P. 2002. Synthesis and characterization of multiwalled carbon nanotubes produced using zeolite Co-beta. Journal of Materials Chemistry 12(6): 1819-1823.

Kharlamova, M.V. 2017. Investigation of growth dynamics of carbon nanotubes. Beilstein Journal of Nanotechnology 8: 826-856.

Larrude, D.G., Ayala, P., da Costa, M.E.H. &. Freire, F.L. 2012. Multiwalled carbon nanotubes decorated with cobalt oxide nanoparticles. Journal of Nanomaterials 2012: Article ID. 695453.

Lu, X., Yim, W.L., Suryanto, B.H.R. & Zhao, C. 2015. Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes. Journal of the American Chemical Society 137(8): 2901-2907.

Mageswari, S., Ahamed, A.J. & Karthikeyan. S. 2014. Effect of temperature and flow rate on the yield of multi-walled carbon nanotubes by spray pyrolysis using cymbopogen flexuous oil. J. Environ. Nanotechnol. 1(1): 28-31.

Mehra, N.K., Jain, K. & Kumar, N.J. 2015. Pharmaceutical and biomedical applications of surface engineered carbon nanotubes. Drug Discovery Today 20(6): 750-759.

Ming, H., Peiling, D., Yunlong, Z., Jing, G. & Xiaoxue, R. 2016. Effect of reaction temperature on carbon yield and morphology of CNTs on copper loaded nickel nanoparticles. Journal of Nanomaterials 2016: Article ID. 8106845.

Monthioux, M. 2011. Introduction to carbon nanotubes. In Carbon Meta-Nanotubes. United Kingdom:: John Wiley & Sons, Ltd. pp. 7-39.

Peng, K., Wan, Y.J., Ren, D.Y., Zeng, Q.W. & Tang, L.C. 2014. Scalable preparation of multiscale carbon nanotube/glass fiber reinforcements and their application in polymer composites. Fibers and Polymers 15(6): 1242-1250.

Qu, X., Pedro, J.J.A. & Li, Q. 2013. Applications of nanotechnology in water and wastewater treatment. Water Research 47(12): 3931-3946.

Rouleau, C.M., Tian, M., Puretzky, A.A., Mahjouri-Samani, M., Duscher, G. & Geohegan, D.B. 2014. Catalytic nanoparticles for carbon nanotube growth synthesized by through thin film femtosecond laser ablation. Proc. of SPIE 8969: 896907.

Shukrullah, S., Mohamed, N.M., Shaharun, M.S. & Naz, M.Y. 2016. Effect of ethylene flow rate and CVD process time on diameter distribution of MWCNTs. Materials and Manufacturing Processes 31(12): 1537-1542.

Sridhar, S., Ge, L., Tiwary, C.S., Hart, A.C., Ozden, S., Kalaga, K., Lei, S., Sridhar, S.V., Sinha, R.K., Harsh, H., Kordas, K., Ajayan, P.M. & Vajtai, R. 2014. Enhanced field emission properties from CNT arrays synthesized on inconel superalloy. ACS Applied Materials & Interfaces 6(3): 1986-1991.

Tran, T.Q., Fan, Z., Liu, P., Sandar, M.M. & Duong, H.M. 2016. Super-strong and highly conductive carbon nanotube ribbons from post-treatment methods. Carbon 99: 407-415.

Vilatela, J.J., Rabanal, M., Cervantes-Sodi, F., García-Ruiz, M., Jiménez-Rodríguez, J.A., Reiband, G. & Terrones, M. 2015. A spray pyrolysis method to grow carbon nanotubes on carbon fibres, steel and ceramic bricks. Journal of Nanoscience and Nanotechnology 15: 2858-2864.

Yeoh, W.M., Lee, K.T., Abdul, Mohamed. & Siang-Piao, C. 2012. Production of carbon nanotubes from chemical vapor deposition of methane in a continuous rotary reactor system. Chemical Engineering Communications 199(5): 600-607.

Yoon, D. & Hyeonsik, C. 2012. Raman spectroscopy for characterization of graphene. In Raman Spectroscopy for Nanomaterials Characterization, edited by Challa, S.S.R.K. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 191-214.

Zhang, Q., Huang, J.Q., Qian, W.Z., Zhang, Y.Y. & Fei, W. 2013. The road for nanomaterials industry: A review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9(8): 1237-1265.

 

*Corresponding author; email: chrahman@usm.my

 

 

 

 

previous