Sains Malaysiana 48(7)(2019): 1325-1332
http://dx.doi.org/10.17576/jsm-2019-4807-02
Artificial Intelligence Projection Model
for Methane Emission from Livestock in Sarawak
(Unjuran Model
Kecerdasan Buatan
untuk Pelepasan Metana daripada Ternakan di Sarawak)
PENG ENG
KIAT1*,
MARLINDA
ABDUL
MALEK2
& SITI
MARIYAM
SHAMSUDDIN3
1Department of Civil Engineering,
Universiti Tenaga Nasional, 43600 Kajang,
Selangor Darul Ehsan, Malaysia
2Institute of Sustainable Energy
(ISE), Universiti Tenaga Nasional, 43600
Kajang, Selangor Darul Ehsan, Malaysia
3UTM Big Data Centre, Ibnu Sina Institute for Scientific
and Industrial Research, Universiti Teknologi Malaysia, 81310 Johor Bahru,
Johor Darul Takzim, Malaysia
Received:
2 February 2019/Accepted: 25 April 2019
ABSTRACT
Artificial Intelligence is
a topical trend employed to solve engineering and industrial problems
by virtue of its abilities to deal with data uncertainty such as
methane emissions. Hard computing methods are not suitable for determining
the optimal emission in a methane emission data set. Instead, soft
computing solutions should be considered in an effort to obtain
better optimal solutions for industrial problems. This paper utilized
the Guidelines provided in the 2006 Intergovernmental Panel on Climate
Change (IPCC)
to calculate and project methane emissions from selected six livestock
in Sarawak, Malaysia. A particle swarm optimization (PSO)
model was developed to project future methane emission by using
number of livestock as the input parameter. The total CH4 inventory
from the enteric fermentation of cattle, buffaloes, goats, sheep,
swine and deer in Sarawak decreased from 1.860 to 1.856 Gg when
calculation was carried out using the Tier 1 method. This decrease
was due to population growth and the emission factors employed.
Three statistical measures, root mean square error (RMSE),
mean absolute error (MAE), and mean absolute percentage error
(MAPE) were employed for evaluation. PSO has
been shown to be able to give an accurate projection. The results
of this study provide a benchmark information which can be used
by the Sarawak government to develop appropriate policies and mitigation
strategies to reduce future carbon footprint in the Sarawak livestock
sector.
Keywords: Enteric fermentation;
livestock; manure management; methane inventory; Tier 1
ABSTRAK
Kecerdasan Buatan adalah tren topikal yang digunakan untuk menyelesaikan masalah kejuruteraan dan perindustrian berdasarkan kemampuannya untuk menangani ketidakpastian data seperti pelepasan metana. Kaedah pengkomputeran keras tidak sesuai
untuk menentukan
pelepasan optimum dalam set data
pelepasan metana. Sebaliknya, penyelesaian pengkomputeran lembut perlu dipertimbangkan dalam usaha untuk
mendapatkan penyelesaian
optimum yang lebih baik
untuk masalah perindustrian.
Kertas ini menggunakan Garis Panduan yang disediakan dalam Panel Antara Kerajaan tentang Perubahan Cuaca (IPCC) 2006 untuk
menghitung dan
mengunjurkan pelepasan metana daripada enam jenis ternakan
terpilih di Sarawak, Malaysia. Model Particle
Swarm Optimization (PSO) telah
dibangunkan untuk mengunjurkan pelepasan metana masa depan dengan menggunakan bilangan ternakan sebagai parameter input. Keseluruhan
inventori CH4 daripada
penternakan lembu,
kerbau, kambing, biri-biri, khinzir dan rusa di Sarawak menurun daripada 1.860 hingga 1.856 Gg apabila pengiraan dilakukan menggunakan kaedah Tier 1. Penurunan ini disebabkan
oleh pertumbuhan
penduduk dan faktor
pelepasan yang digunakan.
Tiga langkah statistik,
iaitu kesilapan
akar min kesilapan (RMSE),
bermakna ralat
mutlak (MAE), dan
kesilapan peratusan
mutlak (MAPE) digunakan
untuk penilaian.
PSO
telah terbukti dapat memberikan unjuran yang tepat. Hasil kajian ini
memberikan maklumat
penanda aras yang boleh digunakan oleh kerajaan Sarawak untuk membangunkan dasar dan strategi
mitigasi yang sesuai
untuk mengurangkan jejak karbon pada
masa hadapan dalam
sektor ternakan di Sarawak.
Kata kunci: Fermentasi
enterik; inventori
metana; pengurusan baja; ternakan; Tier 1
REFERENCES
Al-Sulttani, A.O., Ahsan, A., Hanoon,
A.N., Rahman, A., Daud, N.N.N. & Idrus,
S. 2017. Hourly yield prediction of a double-slope solar still hybrid
with rubber scrapers in low-latitude areas based on the particle
swarm optimization technique. Applied Energy 203: 280-303.
Alwee, R., Shamsuddin, S.M., Aziz, F.A., Chey,
K.H. & Hameed, H.N.A. 2009. The impact of social network structure
in particle swarm optimization for classification problems. International
Journal of Soft Computing 4(4): 151-156.
Amon, B., Kryvoruchko, V., Amon, T. & Zechmeister-
Boltenstern, S. 2006. Methane: Nitrous
oxide and ammonia emissions during storage and after application
of dairy cattle slurry and influence of slurry treatment. Agriculture,
Ecosystems & Environment 112(2-3): 153-162.
Aneja, V.P., Schlesinger,
W.H. & Erisman, J.W. 2009. Effects
of agriculture upon the air quality and climate: Research, policy
and regulations. Environmental Science & Technology 43(12):
4234-4240.
Bell, M., Eckard, R., Moate, P.J. & Yan,
T. 2016. Modelling the effect of diet composition on enteric methane
emissions across sheep, beef cattle and dairy cows. Animals 6(9):
1-16.
Chadwick, D., Sommer,
S., Thorman, R., Fangueiro,
D., Cardenas, L., Amon, B. & Misselbrook,
T. 2011. Manure management: Implications for greenhouse gas emissions.
Animal Feed Science and Technology 166-167: 514-531.
Chairul, S., Dzakiyullah, N.R. & Nugroho,
J.B. 2016. Carbon Dioxide Emission Prediction using Support Vector
Machine. IOP Conference Series: Materials Science and Enginering.
United Kingdom: IOPscience. pp. 1-8.
Chhabra, A., Manjunath, K., Panigrahy, S. &
Parihar, J. 2009. Spatial pattern of methane
emissions from Indian livestock. Current Science 96: 683-689.
Clark, H., Brookes,
I. & Walcroft, A. 2003. Enteric
Methane Emissions from New Zealand Ruminants 1999-2001 Calculated
using an IPCC Tier 2 Approach. New Zealand: Ministry of Agriculture
and Forestry.
Crutzen, P.J., Aselmann, I. & Seiler, W. 1986. Methane production by
domestic animals, wild ruminants, other herbivorous fauna, and humans.
Tellus B: Chemical and Physical Meteorology 38(3-4):
271-284.
Grainger, C. &
Beauchemin, K.A. 2011. Can enteric methane
emissions from ruminants be lowered without lowering their production?
Animal Feed Science and Technology 166-167: 308-320.
Intergovernmental
Panel on Climate Change (IPCC). 2006. 2006 IPCC Guidelines for
National Greenhouse Gas Inventories. Volume 4. Japan: Institute
for Global Environmental Strategies.
Jha, A.K., Singh,
K., Sharma, C., Singh, S.K. & Gupta, P.K. 2011. Assessment of
methane and nitrous oxide emissions from livestock in India. Journal
of Earth Science & Climatic Change 2(1): 1-12.
Johnson, K., Huyler, M., Westberg, H., Lamb,
B. & Zimmerman, P. 1994. Measurement of methane emissions from
ruminant livestock using a SF6 Tracer technique. Environmental
Science and Technology 28(2): 359-362.
Knapp, J.R., Laur, G.L., Vadas, P.A., Weiss,
W.P. & Tricarico, J.M. 2014. Invited
Review: Enteric methane in dairy cattle production: Quantifying
the opportunities and impact of reducing emissions. Journal of
Dairy Science 97(6): 3231- 3261.
Le Goff, G., Dubois,
S., Van Milgen, J. & Noblet,
J. 2002. Influence of dietary fibre level
on digestive and metabolic utilisation
of energy in growing and finishing pigs. Animal Research 51(3):
245-259.
Leytem, A.B., Dungan, R.S., Bjorneberg, D.L. & Koehn, A.C. 2010. Emissions of ammonia,
methane, carbon dioxide, and nitrous oxide from dairy cattle housing
and manure management systems. Journal
of Environmental Quality 39: 1-12.
Marai, I.F.M., El-Darawany,
A.A., Fadiel, A. & Abdel-Hafez, M.A.M.
2007. Physiological traits as affected by heat stress in sheep -
A review. Small Ruminant Research 71(1-3): 1-12.
Marino, R., Atzori,
A.S., D’Andrea, M., Lovane,
G., Trabalza- Marinucci,
M. & Rinaldi, L. 2016. Climate change: Production performance,
health issues, greenhouse gas emissions and mitigation strategies
in sheep and goat farming. Small Ruminant Research 135: 50-59.
Martin, C., Morgavi,
D.P. & Doreau, M. 2010. Methane mitigation
in ruminants: From microbe to the farm scale. Animal 4: 3141-3150.
Ming, M, Niu,
D. & Shang, W. 2014. A small-sample hybrid model for forecasting
energy-related CO2 emissions. Energy 64: 673-677.
Malaysia’s Second National Communication
(NC2) to the UNFCCC. http://unfccc.int/resource/docs/natc/malnc2.pdf.
Accessed on 18 August 2016.
Moeletsi, M.E. & Tongwane,
M.I. 2015. 2004 methane and nitrous oxide emissions from manure
management in South Africa. Animals 5: 193-205.
Moraes, L.E., Strathe,
A.B., Fadel, J.G., Casper, D.P. &
Kebreab, E. 2014. Prediction of methane emission from cattle.
Global Change Biology 20: 2140-2148.
O’Mara, F.P. 2011. The significance
of livestock as a contributor to global greenhouse gas emissions
today and in the near future. Animal Feed Science and Technology
166-167: 7-15.
Ogle, S.M., Buendia,
L., Butterbach-Bahl, K., Breidt,
F.J., Hartman, M., Yagi, K., Nayamuth,
R., Spencer, S., Wirth, T. & Smith, P. 2013. Advancing national
greenhouse gas inventories for agriculture in developing countries:
Improving activity data, emission factors and software technology.
Environmental Research Letters 8: 1-8.
Philippe, F.X. & Nicks, B. 2015.
Review on greenhouse gas emissions from pig houses: Production of
carbon dioxide, methane and nitrous oxide by animals and manure.
Agriculture, Ecosystems & Environment 199: 10-25.
Pragna, P., Chauhan, S.S., Sejian, V., Leury, B.J. & Dunshea, F.R. 2018. Climate change and goat production: Enteric
methane emission and its mitigation. Animals 8(12): 1-17.
Pratt, C., Redding, M., Hill, J.
& Jensen, P. 2015. Does manure management affect the latent
greenhouse gas emitting potential of livestock manures? Waste
Management 46: 568-576.
Sevi, A. & Caroprese,
M. 2012. Impact of heat stress on milk production, immunity and
udder health in sheep: A critical review. Small Ruminant Research
107(1): 1-7.
Sneath, R.W., Phillips, V.R., Demmers, G.M., Burgess, L.R., Short, J.L. 1997. Long Term
Measurements of Greenhouse Gas Emissions from UK Livestock Buildings.
Livestock Environment: Proceedings of the Fifth International
Symposium, Bloomington MN, May 29-31. Wrest Park, Silsoe,
Bedford: Silsoe Research Institute.
Tang, N. & Zhang, D.J. 2011.
Application of a load forecasting model based on improved grey neural
network in the smart grid. Energy Procedia 12: 180-184.
Tauseef, S.M., Premalatha,
M., Abbasi, T. & Abbasi,
S.A. 2013. Review: Methane capture from livestock manure. Journal
of Environmental Management 117: 187-207.
United Nations Climate Change Conference,
15th Conference of Parties (COP 15). https://www.najibrazak.com/en/speeches/
u-n-climate-change-conference-2009-15th-conference-of-parties-cop-15/.
Accessed on 26 November 2016.
United Nations Framework Convention
on Climate Change, List of Non-Annex I Parties to the Convention
http://unfccc.int/ parties_and_observers/parties/non_annex_i/items/2833.php. Accessed on 20 December 2017.
Yusuf, R.O., Noor, Z.Z., Abba, A.H.,
Hassan, M.A. & Din, M.F. 2012. Methane emission by sectors:
A comprehensive review of emission sources and mitigation methods.
Renewable and Sustainable Energy Reviews 16(7): 5059-5070.
*Corresponding author;
email: pengek@gmail.com
|