Sains Malaysiana 48(7)(2019): 1357–1366

http://dx.doi.org/10.17576/jsm-2019-4807-05

 

L-Moment-Based Frequency Analysis of High-Flow at Sungai Langat, Kajang, Selangor, Malaysia

(Analisis Kekerapan berdasarkan L-momen Aliran Tinggi di Sungai Langat, Kajang, Selangor, Malaysia)

 

FIRDAUS MOHAMAD HAMZAH1*, SITI HAWA MOHD YUSOFF1,2 & OTHMAN JAAFAR1

 

1Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Department of Science and Biotechnology, Faculty of Engineering and Life Sciences, Universiti Selangor, 45600 Bestari Jaya, Selangor Darul Ehsan, Malaysia

 

Received: 12 November 2018/Accepted: 5 April 2019

 

ABSTRACT

Annual maximum daily streamflow data were used to examine flood frequency for Sungai Langat in Kajang, Selangor, Malaysia. The objectives of this study were to identify the best fit probability distribution to the streamflow data and estimate the return period of the extreme flood events. The L-moment method was implemented to estimate the parameter of probability, by using distributions namely Gamma, LN3, GEV, PE3, GLO and Kappa. It was found that Kappa distribution was the best fitting distribution to the data after being tested using the goodness-of-fit tests. The Kappa distribution gave the most appropriate to the annual maximum series data of Sungai Langat, Kajang, Selangor. The return values were calculated using Kappa distribution model. The return period of 2 years gave the return value of 49.09 m3/s, while return period of 100 years gave the return value of 390.54 m3/s.

 

Keywords: Goodness-of-fit test; L-moment; probability distribution; return period; streamflow

 

ABSTRAK

Kajian terhadap frekuensi banjir dilakukan bagi kawasan Sungai Langat, Kajang, Selangor, Malaysia dengan menggunakan data maksimum tahunan yang diperoleh daripada data aliran sungai harian. Objektif kajian ini adalah untuk mengenal pasti taburan kebarangkalian terbaik bagi aliran sungai dan seterusnya menganggarkan tempoh pulangan banjir. Kajian ini mengaplikasikan kaedah L-momen untuk menganggarkan parameter kebarangkalian iaitu Gamma, LN3, GEV, PE3, GLO dan Kappa. Didapati taburan Kappa merupakan taburan terbaik setelah diuji menggunakan ujian kebagusan penyuaian. Oleh itu, taburan Kappa dipilih sebagai taburan yang paling sesuai bagi data siri maksimum tahunan untuk Sungai Langat, Kajang, Selangor. Seterusnya, nilai tempoh pulangan dapat dihitung dengan menggunakan parameter Kappa. Tempoh pulangan 2 tahun memberi nilai 49.09 m3/s, manakala tempoh pulangan 100 tahun memberi nilai 390.54 m3/s.

 

Kata kunci: Aliran sungai; L-momen; taburan kebarangkalian; tempoh pulangan; ujian kebagusan penyuaian

REFERENCES

Adamowski, K. 2000. Regional analysis of annual maximum and partial duration flood data by nonparametric and L-moment methods. Journal of Hydrology 229(3-4): 219-231.

Anderson, T.W. & Darling, D.A. 1954. A test of goodness-of-fit. Journal of the American Statistical Association 49(268): 765-769.

Benjamin, J. & Cornell, C. 1970. Probability, Statistics, and Decision for Civil Engineers. New York: McGraw Hill.

Bernama. 2014. Kajang town flooded after downpour. https:// www.thestar.com.my/news/nation/2014/09/29/kajang-town-flooded/.

Bernama. 2014. Flash floods hit Kajang. https://www.thestar.com. my/news/nation/2014/11/12/kjang-flash-floods/.

Bhunya, P.K., Berndtsson, R., Jain, S.K. & Kumar, R. 2013. Flood analysis using negative binomial and generalized pareto models in partial duration series (PDS). Journal of Hydrology 497: 121-132.

Borujeni, S.C., Nor, W. & Sulaiman, A. 2009. Development of L-moment based models for extreme flood events. Malaysian Journal of Mathematical Sciences 3(2): 281-296.

Cohen, A.C. & Whitten, B.J. 1980. Estimation - Parameter in the three lognormal distribution. Journal of the American Statistical Association 75(370): 399-404.

Coles, S.G. & Dixon, M.J. 1999. Likelihood-based inference for extreme value models. Extremes 2(1): 5-23.

D’Agostino, R. 1986. Goodness-of-Fit-Techniques. New York: Marcel Dekker, Inc.

Esteves, L.S. 2013. Consequences to flood management of using different probability distributions to estimate extreme rainfall. Journal of Environmental Management 115: 98-105.

Fisher, R.A. & Tippett, L.H.C. 1928. Limiting forms of the frequency distribution of the largest or smallest member of a sample. Mathematical Proceedings of the Cambridge Philosophical Society 24(02): 180-190.

Fréchet, M. 1927. Sur la loi de probabilité de l’écart maximum. Annales de La Societe Polonaise de Mathematique Cracovie6: 93-116.

Gasim, M.B., Surif, S., Mokhtar, M., Toriman, M.E.H., Rahim, S.A. & Bee, C.H. 2010. Analisis Banjir Disember 2006: Tumpuan di Kawasan Bandar Segamat, Johor. Sains Malaysiana39(3): 353-361.

Gilroy, K.L. & McCuen, R.H. 2012. A nonstationary flood frequency analysis method to adjust for future climate change and urbanization. Journal of Hydrology 414-415: 40-48.

Google Maps. 2015. Langat River at Kajang. https://www.google. com/maps/place/2%C2%B059’40.0%22N+101%C2%B047’ 10.0%22E/@3.0072332,101.6447652,93654m/data=!3m1!1 e3!4m5!3m4!1s0x0:0x0!8m2!3d2.9944444!4d101.7861111.

Gumbel, E. 1958. Statistics of Extremes. Mineola, New York: Dover Publications Inc.

Hailegeorgis, T.T. & Alfredsen, K. 2017. Regional flood frequency analysis and prediction in ungauged basins including estimation of major uncertainties for mid-Norway. Journal of Hydrology: Regional Studies 9: 104-126.

Hashim, N. 2003. Flash flood, imperviousness and urban drainage in Malaysia: The geographical perspective. In Urban Ecosystem Studies in Malaysia: A Study of Change, edited by Hashim, N. & Rainis, R. California: Universal Publisher.

Hassan, B.G.H. & Ping, F. 2012. Regional rainfall frequency analysis for the Luanhe Basin - by using L-moments and cluster techniques. APCBEE Procedia 1(January): 126-135.

Hosking, J.R.M. 1992. Moments or L moments? An example comparing two measures of distributional shape. The American Statistician 46(3): 186-189.

Hosking, J. & Wallis, J. 1987. Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29(3): 339-349.

Hosking, J. & Wallis, J. 1997. Regional Frequency Analysis: An Approach Based on L-Moments. Cambridge: Cambridge University Press.

Katz, R.W. 2002. Techniques for estimating uncertainty in climate change scenarios and impact studies. Climate Research 20: 167-185.

Khaliq, M.N., Ouarda, T.B.M.J., Ondo, J.C., Gachon, P. & Bobee, B. 2006. Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: A review. Journal of Hydrology 329(3-4): 534-552.

Kjeldsen, T.R., Ahn, H. & Prosdocimi, I. 2017. On the use of a four-parameter kappa distribution in regional frequency analysis. Hydrological Sciences Journal 62(9): 1354-1363.

Kjeldsen, T.R. & Jones, D.A. 2004. Sampling variance of flood quantiles from the generalised logistic distribution estimated using the method of L-moments. Hydrology and Earth System Sciences 8(2): 183-190.

Li, M., Shao, Q., Zhang, L. & Chiew, F.H.S. 2010. A new regionalization approach and its application to predict flow duration curve in ungauged basins. Journal of Hydrology 389(1-2): 137-145.

Lim, Y.E.O.H. & Lye, L.M. 2003. Regional flood estimation for ungauged basins in Sarawak, Malaysia. Hydrological Sciences Journal 48(1): 79-94.

Madsen, H., Pearson, C.P. & Rosbjerg, D. 1997. Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events: 2. Regional modeling. Water Resources Research 33(4): 759-769.

Malekinezhad, H., Nachtnebel, H.P. & Klik, A. 2011. Comparing the index-flood and multiple-regression methods using L-moments. Physics and Chemistry of the Earth, Parts A/B/C 36(1-4): 54-60.

Martins, S. & Stedinger, J.R. 2000. Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resources Research 36(3): 737-744.

Mélice, J.L. & Reason, C.J.C. 2007. Return period of extreme rainfall at George, South Africa. South African Journal of Science 103(11-12): 499-501.

Millington, N., Das, S. & Simanovis, S.P. 2011. The comparison of GEV, Log-Pearson type 3 and Gumbel distributions in the upper thames river watershed under global climate models. Water Resources Research Report. p. 40.

Moralles, H.F., Rebelatto, D.A.D.N. & Sartoris, A. 2013. Parametric VaR with goodness-of-fit tests based on EDF statistics for extreme returns. Mathematical and Computer Modelling 58(9-10): 1648-1658.

Mosaffaie, J. 2015. Comparison of two methods of regional flood frequency analysis by using L-moments. Water Resources 42(3): 313-321. https://doi.org/10.1134/S0097807815030112.

Petersen, G. 2009. Managing extreme flood events: Analysing, forecasting, warning, protecting and informing-case studies from the RIMAX projects. Managing Extreme Flood Events. pp. 1-106.

Provost, S.B., Saboor, A., Cordeiro, G.M. & Mansoor, M. 2018. On the q-generalized extreme value distribution. REVSTAT - Statistical Journal 16(1): 45-70.

Rahman, H.A. 2007. Suatu tinjauan terhadap permasalahan banjir kilat di Lembah Klang. Persidanagan Geografi UPSI September: 8-9.

Razali, N. & Wah, Y. 2011. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Llilliefors and Anderson-Darling tests. Journal of Statistical Modeling and Analytics 2(1): 21-33.

Sai Krishna, G. & Veerendra, G.T.N. 2015. Flood frequency analysis of Prakasam Barrage Reservoir Krishna District, Andhra Pradesh using Weibull, Gringorten and L-moments formula. International Journal of Civil, Structural, Environmental and Infrastructure Engineering Research and Development 5(2): 57-62.

Searcy, J.K. 1959. Flow-duration curves. Manual of Hydrology. Part 2. Low-Flow Technique. Geological Survey Water- Supply Paper 1542-A.

Seckin, N., Haktanir, T. & Yurtal, R. 2011. Flood frequency analysis of Turkey using L-moments method. Hydrological Processes 25(22): 3499-3505.

Shabri, A. & Jemain, A.A. 2010. LQ-moments: Parameter estimation for Kappa distribution. Sains Malaysiana39(5): 845-850.

Shao, Q., Zhang, L., Chen, Y.D. & Singh, V.P. 2009. A new method for modelling flow duration curves and predicting streamflow regimes under altered land-use conditions/ Une nouvelle méthode de modélisation des courbes de débits classés et de prévision des régimes d’écoulement sous conditions modifiées d’o. Hydrological Sciences Journal 54(3): 606-622.

Victoria Brown, Beh Yuen Hui & Nicholas Cheng. 2014. Kajang struck by flash floods after heavy rain. https://www.thestar. com.my/news/nation/2014/12/20/kajang-flash-floods/.

Vogel, R.M., Thomas, W.O. & Mcmahon, T.A. 1993. Flood-flow frequency model selection in Southwestern United States. Water Resources 119(3): 353-366.

Wu, Y.C., Liou, J.J., Su, Y.F. & Cheng, K.S. 2012. Establishing acceptance regions for L-moments based goodness-of-fit tests for the Pearson type III distribution. Stochastic Environmental Research and Risk Assessment 26(6): 873-885.

Yue, S. 2001. A bivariate gamma distribution for use in multivariate flood frequency analysis. Hydrological Processes 15(6): 1033-1045.

Zaman, M.A., Rahman, A. & Haddad, K. 2012. Regional flood frequency analysis in arid regions: A case study for Australia. Journal of Hydrology 475: 74-83.

 

*Corresponding author; email: fir@ukm.edu.my

 

 

 

previous