Sains Malaysiana 48(7)(2019): 1357–1366
http://dx.doi.org/10.17576/jsm-2019-4807-05
L-Moment-Based Frequency
Analysis of High-Flow at Sungai Langat, Kajang, Selangor, Malaysia
(Analisis
Kekerapan berdasarkan
L-momen Aliran Tinggi di Sungai
Langat, Kajang, Selangor, Malaysia)
FIRDAUS MOHAMAD HAMZAH1*, SITI HAWA MOHD YUSOFF1,2 & OTHMAN JAAFAR1
1Department of Civil and
Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
2Department of Science
and Biotechnology, Faculty of Engineering and Life Sciences, Universiti Selangor, 45600 Bestari Jaya, Selangor Darul Ehsan, Malaysia
Received:
12 November 2018/Accepted: 5 April 2019
ABSTRACT
Annual maximum daily streamflow
data were used to examine flood frequency for Sungai
Langat in Kajang,
Selangor, Malaysia. The objectives of this study were to
identify the best fit probability distribution to the streamflow
data and estimate the return period of the extreme flood events.
The L-moment method was implemented to estimate the parameter of
probability, by using distributions namely Gamma, LN3,
GEV,
PE3,
GLO
and Kappa. It was found that Kappa distribution was
the best fitting distribution to the data after being tested using
the goodness-of-fit tests. The Kappa distribution gave the most
appropriate to the annual maximum series data of Sungai Langat,
Kajang, Selangor. The return values
were calculated using Kappa distribution model. The return period
of 2 years gave the return value of 49.09 m3/s, while return period of 100
years gave the return value of 390.54 m3/s.
Keywords:
Goodness-of-fit test; L-moment; probability distribution; return period;
streamflow
ABSTRAK
Kajian terhadap frekuensi
banjir dilakukan
bagi kawasan Sungai Langat,
Kajang, Selangor, Malaysia dengan
menggunakan data maksimum tahunan yang diperoleh daripada data aliran sungai harian. Objektif kajian ini adalah untuk
mengenal pasti
taburan kebarangkalian terbaik bagi aliran
sungai dan
seterusnya menganggarkan tempoh pulangan banjir. Kajian ini mengaplikasikan kaedah L-momen untuk menganggarkan parameter
kebarangkalian iaitu Gamma,
LN3,
GEV,
PE3,
GLO
dan Kappa. Didapati
taburan Kappa merupakan
taburan terbaik setelah diuji menggunakan
ujian kebagusan
penyuaian. Oleh itu, taburan Kappa dipilih sebagai taburan yang paling sesuai bagi data siri maksimum tahunan untuk Sungai Langat, Kajang, Selangor.
Seterusnya, nilai tempoh pulangan dapat dihitung dengan menggunakan parameter
Kappa. Tempoh pulangan
2 tahun memberi nilai
49.09 m3/s, manakala tempoh pulangan 100 tahun memberi nilai
390.54 m3/s.
Kata kunci: Aliran sungai; L-momen; taburan kebarangkalian; tempoh pulangan; ujian kebagusan penyuaian
REFERENCES
Adamowski, K. 2000. Regional analysis
of annual maximum and partial duration flood data by nonparametric and L-moment
methods. Journal of Hydrology 229(3-4): 219-231.
Anderson, T.W. & Darling, D.A. 1954. A test of
goodness-of-fit. Journal of the American Statistical Association 49(268):
765-769.
Benjamin, J. & Cornell, C. 1970. Probability, Statistics,
and Decision for Civil Engineers. New York: McGraw Hill.
Bernama. 2014. Kajang town flooded after downpour. https://
www.thestar.com.my/news/nation/2014/09/29/kajang-town-flooded/.
Bernama. 2014. Flash floods hit Kajang. https://www.thestar.com.
my/news/nation/2014/11/12/kjang-flash-floods/.
Bhunya, P.K., Berndtsson,
R., Jain, S.K. & Kumar, R. 2013. Flood analysis using negative binomial and
generalized pareto models in partial duration series
(PDS). Journal of Hydrology 497: 121-132.
Borujeni, S.C., Nor, W. & Sulaiman, A. 2009. Development of L-moment based models for
extreme flood events. Malaysian Journal of Mathematical Sciences 3(2):
281-296.
Cohen, A.C. & Whitten, B.J. 1980. Estimation - Parameter in
the three lognormal distribution. Journal of the American Statistical
Association 75(370): 399-404.
Coles, S.G. & Dixon, M.J. 1999. Likelihood-based inference for
extreme value models. Extremes 2(1): 5-23.
D’Agostino, R. 1986. Goodness-of-Fit-Techniques.
New York: Marcel Dekker, Inc.
Esteves, L.S. 2013. Consequences to
flood management of using different probability distributions to estimate
extreme rainfall. Journal of Environmental Management 115: 98-105.
Fisher, R.A. & Tippett, L.H.C. 1928.
Limiting forms of the frequency distribution of the largest or smallest member
of a sample. Mathematical Proceedings of the Cambridge Philosophical Society 24(02): 180-190.
Fréchet, M. 1927. Sur la loi de probabilité de l’écart maximum. Annales de La Societe Polonaise de Mathematique Cracovie6: 93-116.
Gasim, M.B., Surif,
S., Mokhtar, M., Toriman, M.E.H., Rahim, S.A. &
Bee, C.H. 2010. Analisis Banjir Disember 2006: Tumpuan di Kawasan Bandar Segamat, Johor. Sains Malaysiana39(3):
353-361.
Gilroy, K.L. & McCuen, R.H. 2012. A
nonstationary flood frequency analysis method to adjust for future climate
change and urbanization. Journal of Hydrology 414-415: 40-48.
Google Maps. 2015. Langat River at Kajang.
https://www.google. com/maps/place/2%C2%B059’40.0%22N+101%C2%B047’
10.0%22E/@3.0072332,101.6447652,93654m/data=!3m1!1
e3!4m5!3m4!1s0x0:0x0!8m2!3d2.9944444!4d101.7861111.
Gumbel, E. 1958. Statistics of Extremes. Mineola, New York:
Dover Publications Inc.
Hailegeorgis, T.T. & Alfredsen, K. 2017. Regional flood frequency analysis and
prediction in ungauged basins including estimation of major uncertainties for
mid-Norway. Journal of Hydrology: Regional Studies 9: 104-126.
Hashim, N. 2003. Flash flood,
imperviousness and urban drainage in Malaysia: The geographical perspective. In Urban Ecosystem Studies in Malaysia: A Study of Change, edited by Hashim, N. & Rainis, R.
California: Universal Publisher.
Hassan, B.G.H. & Ping, F. 2012. Regional rainfall frequency
analysis for the Luanhe Basin - by using L-moments
and cluster techniques. APCBEE Procedia 1(January): 126-135.
Hosking, J.R.M. 1992. Moments or L moments? An example comparing
two measures of distributional shape. The American Statistician 46(3):
186-189.
Hosking, J. & Wallis, J. 1987. Parameter and quantile
estimation for the generalized Pareto distribution. Technometrics 29(3): 339-349.
Hosking, J. & Wallis, J. 1997. Regional Frequency Analysis:
An Approach Based on L-Moments. Cambridge: Cambridge University Press.
Katz, R.W. 2002. Techniques for estimating uncertainty in climate
change scenarios and impact studies. Climate Research 20: 167-185.
Khaliq, M.N., Ouarda, T.B.M.J., Ondo, J.C., Gachon, P. & Bobee, B. 2006.
Frequency analysis of a sequence of dependent and/or non-stationary
hydro-meteorological observations: A review. Journal of Hydrology 329(3-4):
534-552.
Kjeldsen, T.R., Ahn, H. & Prosdocimi, I.
2017. On the use of a four-parameter kappa distribution in regional frequency
analysis. Hydrological Sciences Journal 62(9): 1354-1363.
Kjeldsen, T.R. & Jones, D.A.
2004. Sampling variance of flood quantiles from the generalised logistic distribution estimated using the method of L-moments. Hydrology and
Earth System Sciences 8(2): 183-190.
Li, M., Shao, Q., Zhang,
L. & Chiew, F.H.S. 2010. A new regionalization
approach and its application to predict flow duration curve in ungauged basins. Journal of Hydrology 389(1-2): 137-145.
Lim, Y.E.O.H. & Lye,
L.M. 2003. Regional flood estimation for ungauged basins in Sarawak, Malaysia. Hydrological
Sciences Journal 48(1): 79-94.
Madsen, H., Pearson,
C.P. & Rosbjerg, D. 1997. Comparison of annual
maximum series and partial duration series methods for modeling extreme
hydrologic events: 2. Regional modeling. Water Resources Research 33(4):
759-769.
Malekinezhad, H., Nachtnebel, H.P. & Klik, A.
2011. Comparing the index-flood and multiple-regression methods using
L-moments. Physics and Chemistry of the Earth, Parts A/B/C 36(1-4):
54-60.
Martins, S. & Stedinger, J.R. 2000. Generalized maximum-likelihood
generalized extreme-value quantile estimators for hydrologic data. Water
Resources Research 36(3): 737-744.
Mélice, J.L. & Reason,
C.J.C. 2007. Return period of extreme rainfall at George, South Africa. South
African Journal of Science 103(11-12): 499-501.
Millington, N., Das, S.
& Simanovis, S.P. 2011. The comparison of GEV,
Log-Pearson type 3 and Gumbel distributions in the upper thames river watershed under global climate models. Water Resources Research
Report. p. 40.
Moralles, H.F., Rebelatto, D.A.D.N. & Sartoris,
A. 2013. Parametric VaR with goodness-of-fit
tests based on EDF statistics for extreme returns. Mathematical
and Computer Modelling 58(9-10): 1648-1658.
Mosaffaie, J. 2015.
Comparison of two methods of regional flood frequency analysis by
using L-moments. Water Resources 42(3): 313-321. https://doi.org/10.1134/S0097807815030112.
Petersen, G. 2009.
Managing extreme flood events: Analysing, forecasting,
warning, protecting and informing-case studies from the RIMAX projects. Managing
Extreme Flood Events. pp. 1-106.
Provost, S.B., Saboor, A., Cordeiro, G.M. & Mansoor, M. 2018. On the q-generalized extreme value
distribution. REVSTAT - Statistical Journal 16(1): 45-70.
Rahman, H.A. 2007. Suatu tinjauan terhadap permasalahan banjir kilat di Lembah Klang. Persidanagan Geografi UPSI September: 8-9.
Razali, N. & Wah, Y. 2011. Power comparisons of Shapiro-Wilk,
Kolmogorov-Smirnov, Llilliefors and Anderson-Darling
tests. Journal of Statistical Modeling and Analytics 2(1): 21-33.
Sai Krishna, G. & Veerendra, G.T.N. 2015. Flood frequency analysis of Prakasam Barrage Reservoir Krishna District, Andhra Pradesh
using Weibull, Gringorten and L-moments formula. International
Journal of Civil, Structural, Environmental and Infrastructure Engineering
Research and Development 5(2): 57-62.
Searcy, J.K. 1959.
Flow-duration curves. Manual of Hydrology. Part 2. Low-Flow Technique.
Geological Survey Water- Supply Paper 1542-A.
Seckin, N., Haktanir, T. & Yurtal, R.
2011. Flood frequency analysis of Turkey using L-moments method. Hydrological
Processes 25(22): 3499-3505.
Shabri, A. & Jemain, A.A. 2010. LQ-moments: Parameter estimation for
Kappa distribution. Sains Malaysiana39(5): 845-850.
Shao, Q., Zhang, L.,
Chen, Y.D. & Singh, V.P. 2009. A new method for modelling flow duration
curves and predicting streamflow regimes under altered land-use conditions/ Une nouvelle méthode de modélisation des courbes de débits classés et de prévision des régimes d’écoulement sous conditions modifiées d’o. Hydrological Sciences Journal 54(3): 606-622.
Victoria Brown, Beh Yuen Hui & Nicholas Cheng. 2014. Kajang struck by flash floods after heavy rain.
https://www.thestar. com.my/news/nation/2014/12/20/kajang-flash-floods/.
Vogel, R.M., Thomas,
W.O. & Mcmahon, T.A. 1993. Flood-flow frequency
model selection in Southwestern United States. Water Resources 119(3):
353-366.
Wu, Y.C., Liou, J.J., Su, Y.F. & Cheng, K.S. 2012. Establishing
acceptance regions for L-moments based goodness-of-fit tests for the Pearson
type III distribution. Stochastic Environmental Research and Risk Assessment 26(6): 873-885.
Yue, S. 2001. A bivariate
gamma distribution for use in multivariate flood frequency analysis. Hydrological
Processes 15(6): 1033-1045.
Zaman, M.A., Rahman, A.
& Haddad, K. 2012. Regional flood frequency analysis in arid regions: A
case study for Australia. Journal of Hydrology 475: 74-83.
*Corresponding
author; email: fir@ukm.edu.my
|