Sains Malaysiana 48(7)(2019): 1367–1381
http://dx.doi.org/10.17576/jsm-2019-4807-06
Aplikasi Sistem Maklumat Geografi (GIS) dan Analisis Diskriminan dalam Pemodelan Kejadian Kegagalan Cerun di Pulau Pinang, Malaysia
(Application of Geographical
Information Systems (GIS) and Discriminant Analysis in Modelling
Slope Failure Incidence in Pulau Pinang,
Malaysia)
NURIAH ABD MAJID1*
& RUSLAN RAINIS2
1Institut Alam Sekitar dan Pembangunan (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Bahagian Geografi, Pusat Pengajian Ilmu Kemanusiaan, Universiti Sains Malaysia, 11800 USM Penang, Pulau Pinang, Malaysia
Received:
28 September 2018/Accepted: 22 April 2019
ABSTRAK
Kegagalan cerun merupakan
suatu fenomena
disebabkan hujan yang sering berlaku di kawasan tropika seperti Malaysia. Kertas ini menghuraikan penggunaan Sistem Maklumat Geografi (GIS)
dan Analisis
Diskriminan untuk memodelkan ciri-ciri fizikal kegagalan cerun serta hubung
kait statistik
kejadian kegagalan cerun dengan parameter fizikal yang menyumbang kepada kejadian kegagalan cerun di Pulau Pinang. Analisis diskriminan adalah satu kaedah analisis
yang boleh digunakan
untuk mendiskriminasikan sesuatu kumpulan kegagalan cerun berdasarkan parameter tertentu.
Tujuan utama analisis
ini dijalankan
adalah bagi memahami
faktor yang mempengaruhi
perbezaan antara kumpulan kegagalan cerun dan cerun
stabil (tiada
kegagalan cerun), seterusnya membuat ramalan tentang kemungkinan terjadi sesuatu kegagalan cerun. Oleh yang demikian, satu kombinasi linear pemboleh ubah bebas telah
dibentuk dan
digunakan sebagai asas dalam mengkelaskan
kes kegagalan
cerun tertentu. Kajian ini menggunakan
sepuluh pemboleh
ubah iaitu jarak
ke jalan,
purata hujan tahunan,
litologi batuan,
ketinggian topografi, kecuraman cerun, siri tanih, aspek
cerun, jarak
ke sungai, jenis
guna tanah
dan lineamen. Model yang terhasil didapati berjaya meramal 92.5% daripada kejadian kegagalan cerun sebenar. Model yang dibentuk
kemudiannya telah dinilai menggunakan 30% daripada sampel kejadian sebenar dan menghasilkan ketepatan sebanyak 91.24%.
Kata kunci: Analisis diskriminan; kegagalan cerun; pemodelan ruangan; Pulau Pinang; Sistem Maklumat Geografi
ABSTRACT
Slope failure is a phenomenon
due to frequent rainfall that occurs in tropical areas such as Malaysia.
This paper describes the use of Geographical Information Systems
(GIS)
and Discriminant Analysis to model the physical features of slope
failure and the statistical association between slope failure events
with physical parameters that contribute to the incidence of slope
failure in Pulau Pinang. Discriminant analysis is an analysis method
that can be used to discriminate against a set of slope failures
based on certain criteria. The main purpose of this analysis were
to understand the factors that affect the difference between the
group of slope failure and subsequently making predictions about
a possible slope failure. Therefore, a linear combination of independent
variables has been formed and used as a basis for classifying certain
slope failure cases. The study used ten variables: distance to the
road, average annual rainfall, lithology, topography height, slope
gradient, soil series, slope aspect, distance to river, landuse type and lineament. The resulting model was able
to predict 92.5% of actual slope failure events. The model was validated
using 30% of the actual incident samples and found 91.24% accuracy.
Keywords: Discriminant analysis; Geographical Information System;
Pulau Pinang; slope failure; spatial modeling
REFERENCES
Akgul, A. & Bulut,
F. 2007. GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region. Environ. Geol. 51(8): 1377-1387.
Akgun, A., Dag, S. & Bulut, F. 2008. Landslide susceptibility mapping for a
landslide-prone area (Findikli, NE of Turkey) by
likelihood-frequency ratio and weighted linear combination models. Environmental
Geology 54(6): 1127- 1143.
Aleotti, P. & Chowdhury, R. 1999.
Landslide hazard assessment: Summary review and new perspectives. Bull. Eng.
Geol. Env. 58(1): 21-44.
Althuwaynee, O.F. & Pradhan, B. 2017.
Semi-quantitative landslide risk assessment using GIS-based exposure analysis
in Kuala Lumpur City, Geomatics, Natural Hazards and Risk 8(2): 706-732.
DOI: 10.1080/19475705.2016.1255670.
Atkinson, P.M. & Massari, R. 1998.
Generalized linear modeling of susceptibility to landsliding in the central Apennines, Italy. Comput. Geosci. 24(4): 373-385.
Ayalew, L. & Yamagishi, H. 2005.
The application of GIS-based logistic regression for landslide susceptibility
mapping in the Kakuda-Yahiko Mountains, Central
Japan. Geomorphology 65(1): 15-31.
Ayele, S., Raghuvanshi,
T.K. & Kala, P.M. 2014. Application of remote sensing and GIS for landslide
disaster management: A case from Abay Gorge, Gohatsion-Dejen section, Ethiopia. In Landscape Ecology
and Water Management. Tokyo: Springer. hlm.
15-32.
Baecher, G. & Christian, J. 2003. Reliability and Statistics in Geotechnical Engineering. 1st ed. Chichester: John Wiley.
Baeza, C. & Corominas,
J. 2001. Assessment of shallow landslide susceptibility by means of
multivariate statistical techniques. Earth Surface Process & Landform 26(12):
1251-1263.
Bates, R.L. & Jackson, J.A. 1987. Glossary of Geology.
Alexandria, Virginia: American Geological Institute. p. 788.
Ben Slimane, A., Raclot,
D., Evrard, O., Sanaa, M., Lefèvre,
I. & Le Bissonnais, Y. 2015. Relative
contribution of rill/ interrill and gully/channel
erosion to small reservoir siltation in mediterranean environments. Land Degradation & Development 27(3): 785-797. DOI:
10.1002/ldr.2387.
Beven, K.J. & Kirkby, M.J. 1979. A physically based, variable
contributing area model of basin hydrology. Hydrological Sciences Bulletin 24:
43-69.
Borga, M., Tonelli, F., dalla Fontana, G. & Cazorzi,
F. 2005. Evaluating the influence of forest roads on shallow landsliding. Ecol. Model. 187: 85-98.
Bromley, D.W. 1971. The use of discriminant analysis in selecting
rural development strategies. American Journal of Agricultural Economics 53(2):
319-322.
Budimir, M.E.A.,
Atkinson, P.M. & Lewis, H.G. 2015. A systematic review of landslide
probability mapping using logistic regression. Landslides 12(3):
419-436.
Bui, D.T., Pradhan, B., Lofman, O., Revhaug, I. &
Dick, O.B. 2012. Landslide susceptibility assessment in the Hoa Binh Province of Vietnam: A comparison of the Levenberg Marquardt and Bayesian regularized neural
networks. Geomorphology doi:10.1016/ j.geomorph.
Caniani, D.,
Pascale, S., Sdao, F. & Sole, A. 2007. Neural
networks and landslide susceptibility: A case study of the urban area of potenza. Natural Hazards 45: 55-72.
Carrara,
A., Cardinali, M., Guzzetti, F. & Reichenbach, P. 1995. GIS technology in mapping landslide
hazard. Geographical Information Systems in Assessing Natural Hazards.
Netherlands: Springer. pp. 135-175.
Carrara,
A., Cardinali, M., Detti,
R., Guzzetti, F., Pasqui, V. & Reichenbach, P. 1991. GIS techniques and statistical models
in evaluating landslide hazard. Earth Surface Processes and Landforms 16(5):
427-445.
Carro, M.,
de Amicis, M., Luzi, L.
& Marzorati, S. 2003. The application of
predictive modeling techniques to landslides induced by earthquakes, the case
study of the 26 September 1997 Umbria-Marche Earthquake (Italy). Eng. Geol. 69:
139-159.
Cevik, E.
& Topal, T. 2003. GIS-based landslide
susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environmental Geology (44):
949-962.
Chapin,
F.S. & Kaiser, E.J. 1979. Urban Land Use Planning. Urbana:
University of Illinois Press.
Chen,
H., Lin, G.W., Lu, M.H., Shih, T.Y., Horng, M.J.
& Wu, S.J. 2011. Effects of topography, lithology, rainfall and earthquake
on landslide and sediment discharge in mountain catchments of Southeastern
Taiwan. Geomorphology 133: 132-142.
Choi,
J., Oh, H.J., Won, J.S. & Lee, S. 2010. Validation of an artificial neural
network model for landslide susceptibility mapping. Environmental Earth
Sciences 60(3): 473-483. https://doi.org/10.1007/s12665-009-0188-0.
Chung,
C.J.F., Fabbri, A.G. & Van Westen,
C.J. 1995. Multivariate regression analysis for landslide hazard zonation. Geographical
Information Systems in Assessing Natural Hazards. Netherlands: Springer.
pp. 107-133.
Clerici, A., Perego, S., Tellini, C. & Vescovi, P. 2002. A procedure for landslide susceptibility
zonation by the conditional analysis method. Geomorphology 48(4):
349-364.
Conforti, M., Aucelli, P.P., Robustelli, G.
& Scarciglia, F. 2011. Geomorphology and GIS
analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (northern Calabria, Italy). Nat. Hazards. 56(3)
881-898.
Dahal, R.K.,
Hasegawa, S., Nonomura, A., Yamanaka, M., Dhakal, S. & Paudyal, P.
2008. Predictive modelling of rainfall-induced landslide hazard in the Lesser
Himalaya of Nepal based on weight of evidence. Geomorphology 102:
496-510.
Dai,
F.C. & Lee, C.F. 2002. Landslide characteristics and slope instability
modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42(3):
213-228.
Dai,
F.C. & Lee, C.F. 2001. Frequency volume relation and prediction of
rainfall-induced landslides. Eng. Geol. 59(3- 4): 253-266.
Dong,
J.J., Tsao, C.C., Yang, C.M., Wu, W.J., Lee, C.T.,
Lin, M.L., Zhang, W.F., Pei, X.J., Wang, G.H. & Huang, R.Q. 2017. The
geometric characteristics and initiation mechanisms of the earthquake-triggered Daguangbao landslide. In Geotechnical Hazards from
Large Earthquakes and Heavy Rainfalls, edited by Hazarika, H., Kazama, M. & Lee, W. Tokyo: Springer. hlm. 203-213.
Dragicevic, S.,
Lai, T. & Balram, S. 2015. GIS-based multicriteria evaluation with multiscale analysis to
characterize urban landslide susceptibility in data-scarce environments. Habitat
International 45: 114-125.
Ercanoglu, M.
& Gokceoglu, C. 2002. Assessment of landslide
susceptibility for a landslide-prone area (north of Yenice,
NW Turkey) by fuzzy approach. Environmental Geology 41(6): 720-730.
Fatimah Shafinaz, A. 2005. Penggunaan sistem maklumat geografi untuk meramal keruntuhan cerun di Pulau Pinang. Tesis Ijazah Sarjana Kejuruteraan Awam Universiti Teknologi Malaysia (Tidak diterbitkan).
Field,
A. 2009. Discovering Statistics using SPSS. 3rd ed. Los Angeles: SAGE
Publications Ltd.
Frattini, P., Crosta, G., Carrara, A. & Agliardi,
F. 2008. Assessment of rockfall susceptibility by
integrating statistical and physically based approaches. Geomorphology 94:
419- 437.
Gerrard,
A.J. 1981. Soil and landforms: An integration of geomorphology and pedology. Deparment of Geography,
University of Birmigham (Unpublished).
Gessesse, B., Bewket, W. & Brauning, A.
2015. Model-based characterization and monitoring of runoff and soil erosion in
response to land use/land cover changes in the Modjo watershed, Ethiopia. Land Degrad. Dev. 26:
711-724. doi: 10.1002/ldr.2276.
Gigovic, L., Drobnjak, S. & Pamucar, D.
2019. The application of the hybrid GIS spatial multi-criteria decision
analysis best-worst methodology for landslide susceptibility mapping. International
Journal of Geo-Information (ISPRS) 8(79): 1-29.
Gokceoglu, C., Sonmez, H. & Ercaglu, M.
2000. Discontinuity controlled probabilistic slope failure risk maps of the Altindag (settlement) region in Turkey. Engineering
Geology 55: 227-296.
Gorsevski, P.V.,
Gessler, P. & Foltz, R.B. 2000. Spatial prediction of landslide hazard
using discriminant analysis and GIS. GIS in the Rockies 2000 Conference and
Workshop Applications for the 21st Century. Denver, Colorado. September
25-27.
Guo, C.,
Montgomery, D.R., Zhang, Y., Wang, K. & Yang, Z. 2015. Quantitative
assessment of landslide susceptibility along the Xianshuihe fault zone, Tibetan Plateau, China. Geomorphology 248: 93-100.
Guo-liang, D.,
Zhang, Y.S. & Iqbal, J. 2017. Landslide susceptibility mapping using an
integrated model of information value method and logistic regression in the Bailongjiang watershed, Gansu Province, China. Journal
of Mountain Science 14(2): 249-268. DOI: 10.1007/s11629- 016-4126-9.
Guzzetti,
F., Galli, M., Reichenbach, P., Ardizzone,
F. & Cardinali, M. 2006. Landslide hazard
assessment in the Collazzone area, Umbria, Central
Italy. Natural Hazards and Earth System Sciences 6: 115-131.
Guzzetti,
F., Carrara, A., Cardinali, M. & Reichenbach, P. 1999. Landslide evaluation: A review of
current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31: 181-216.
Guzzetti,
F., Cardinali, M. & Reichhenbach,
P. 1994. The AVI Project: A bibliographical and archive inventory of landslides
and floods in Italy. Environmental Management 18(4): 623- 633.
Gupta, S.K., Shukla, D.P. &
Thakur, M. 2018. Selection of weightages for causative factors used in
preparation of landslide susceptibility zonation
(LSZ). Geomatics, Natural Hazards and Risk 9(1): 471-487.
Hair, J.F., Anderson, E.R., Tatham, R.L. & Black, W.C. 1992. Multivariate
Data Analysis with Reading. Edisi Ketiga. New York: Macmillan Publishing Company.
Haregeweyn, N., Poesen,
J., Verstraeten, G., Govers,
G., Vente, J., Nyssen, J., Deckers,
J. & Moeyersons, J. 2013. Assessing the
performance of a spatially distributed soil erosion and sediment delivery model
(watem/sedem) in Northern
Ethiopia. Land Degrad. Develop. 24: 188-204.
doi:10.1002/ ldr.1121.
Hong, H., Naghibi, S.A., Dashtpagerdi, M.M., Pourghasemi,
H.R. & Chen, W. 2017. A comparative assessment between linear and quadratic
discriminant analyses (LDA-QDA) with frequency ratio and weights-of-evidence
models for forest fire susceptibility mapping in China. Arab. J. Geosci. 10: 167.
Hong, H., Pourghasemi, H.R. & Pourtaghi, Z.S. 2016. Landslide susceptibility assessment
in Lianhua County (China): A comparison between a
random forest data mining technique and bivariate and multivariate statistical
models. Geomorphology 259: 105-118.
IBM. 2016. Discriminant Analysis. http://www.ibm.com/support/ knowledgecenter/SSLVMB_22.0.0/com.ibm.spss.statistics.
help/spss/base/idh_disc.htm.
Ibrahim Komoo. 1989. Engineering Geology
of Kuala Lumpur, Malaysia. Proc. Int. Conf. Eng. Geology in Tropica Terrain. Kuala Lumpur. hlm.
262-273.
Ibrahim Abdullah & Juhari Mat Akhir. 1990. Basic Dictionary of Geological Terms. Bangi: Universiti Kebangsaan Malaysia.
Jaafari, A., Najari,
A., Rezaeian, J., Sattarian,
A. & Ghajar, I. 2015. Planning road network in
landslide-prone areas: A case study from the Northern Forests of Iran. Land
Use Policy 47: 198-208.
Jaafari, A., Najafi,
A., Rezaeian, J. & Sattarian,
A. 2014. Modeling erosion and sediment delivery from unpaved roads in the north
mountainous forest of Iran. GEM - Int. J. Geomath.
6(2): 343-356.
Jabatan Perangkaan Malaysia. 2013. Maklumat Asas Negeri Pulau Pinang. Jabatan Pemetaan Malaysia.
Kai, X., Qiang, G., Zhengwei,
L., Jie, X., Yanshan, Q.
& Chunfang, K. 2015. Landslide susceptibility
evaluation based on BPNN and GIS: A Case of Guojiaba in The Three Gorges Reservoir Area. International Journal of Geographical
Information Science 29(7): 1111-1124.
Kanungo, D.P., Arora, M.K., Sarkar,
S. & Gupta, R.P. 2006. A comparative study of conventional, ANN black box,
fuzzy and combined neural and fuzzy weighting procedures for landslide
susceptibility zonation in Darjeeling Himalayas. Engineering Geology 85:
347-366.
Kazmi, D., Qasim,
S., Harahap, I.S.H., Baharom,
S., Imran, M. & Moin, S. 2016. A study on the
contributing factors of major landslides in Malaysia. Civil Engineering
Journal 2(12): 669-678.
Klecka, W. 1980. Discriminant
Analysis. California: Sage Publication.
Klose, M., Gruber, D., Damn, B. & Gerold,
G. 2014. Spatial databases and GIS as a tools for regional landslide
susceptibility modeling. Zeitschrift für Geomorphologie58(1):
1-36.
Komac, M. 2006. A landslide
susceptibility model using the analytical hierarchy process method and
multivariate statistics in perialpine Slovenia. Geomorphology 74(1): 17-28.
Kou, M., Jiao, J., Yin, Q., Wang, N., Wang, Z., Li, Y. & Cao,
B. 2016. Successional trajectory over 10 years of vegetation restoration of
abandoned slope croplands in the hill-gully region of the loess plateau. Land
Degradation & Development 27(4): 919-932.
Lamelas, M.T., Marinoni, O., Hoppe,
A. & Riva, J. 2008. Doline probability map using
logistic regression and GIS technology in the central Ebro Basin (Spain). Environ.
Geol. 54(5): 963-977.
Lan, H.X., Zhou, C.H., Wang, L.J., Zhang, H.Y. & Li, R.H. 2004.
Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China. Engineering Geology 76(1):
109-128.
Lee, S. & Pradhan, B. 2007. Landslide hazard mapping at
Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4: 33-41.
Lee, S. & Pradhan, B. 2006. Probabilistic landslide hazards
and risk mapping on Penang Island, Malaysia. Journal of Earth System Science 115(6): 661-672.
Lee, S. & Jasmi, A.T. 2005.
Probabilistic landslide susceptibility and factor effect analysis. Environ.
Geol. 47: 982-990.
Lee, S. & Min, K. 2001. Statistical analysis of landslide
susceptibility at Yongin, Korea. Env. Geol. 40: 1095-1113.
Leoi, S., Chan, A. & Trisha, N
2018. Malaysia among countries especially prone to landslides. The Star. 4
Dec.
Lin, H.M., Chang, S.K., Wu, J.H. & Juang,
C.H. 2009. Neural network-based model for assessing failure potential of
highway slopes in the Alishan, Taiwan Area: Pre- and
post-earthquake investigation. Engineering Geology 104(3-4): 280-289.
Lin, M.L., Lin, S.C. & Lin, Y.C. 2016. Review of landslide
occurrence and climate change in Taiwan. In Slope Safety Preparedness for
Impact of Climate Change, edited by Ho, K., Lacasse,
S. & Picarelli, L. London: CRC Press. hlm. 409-436. 10.1201/9781315387789-14.
Mark, R.K. & Ellen, S.D. 1995. Statistical and simulation
models for mapping debris-flow hazard. In Geographical Information Systems
in Assessing Natural Hazards. Netherlands: Springer. pp. 93-106.
Montgomery, C.W. 1997. Env.
Geol. 5th ed. New York: WCB McGraw-Hill Co.
Moore, I.D. & Gallant, J.C. 1991. Overview of hydrologic and
water quality modeling. Modeling the Fate of Chemicals in the Environmental,
edited by Moore, I.D. Canberra: Center for Resource and Environmental Studies,
the Australian National University. hlm. 1-8.
Morrison, D.G. 1967. On the interpretation of discriminant
analysis. Journal of Marketing Research 6(2): 156-163.
Moses, C. & Robinson, D. 2011. Chalk coast dynamics:
Implications for understanding rock coast evolution. Earth- Science Reviews 109(3-4):
63-73.
Mustafa Kamal. 2007. Climate change - Its effects on the
agricultural sector in Malaysia. Paper presented at National Seminar on
Socio-Economic Impact of Extreme Weather and Climate Change, organized by
the Ministry of Science, Technology and Innovation, Putrajaya, Malaysia. 21- 22
June.
Mwaniki, M.W., Moeller, M.S. & Schellmann. 2015. A comparison of Landsat (OLI) and landsat & (ETM+) in mapping geology and visualizing
lineament: A case study of central region Kenya. International Symposium on
Remote Sensing of Environment. 11-15 May, Berlin, Germany.
Nagarajan, R., Roy, A., Kumar, R.V., Mukherjee, A. & Khire, M.V. 2000. Landslide hazard susceptibility mapping
based on terrain and climatic factors for tropical monsoon regions. Bull. of
Eng. Geol. and Env. 58(4): 275-287.
Nandi, A. & Shakoor, A. 2010. A
GIS-based landslide susceptibility evaluation using bivariate and multivariate
statistical analyses. Eng. Geol. 110(1-2): 11-20.
Nicholas, K.C. 1995. Geohazards:
Natural and Human. New Jersey: Prentice Hall.
Norusis, M.J. 1993. SPSS: SPSS for
Windows, Base System User’s Guide Release 6.0. SPSS Inc.
Nuriah, A.M., Ruslan,
R. & Wan, M.M.W.I. 2018. Pemodelan ruangan pelbagai jenis kegagalan cerun menggunakan rangkaian saraf buatan (ANN) di Pulau Pinang,
Malaysia. Jurnal Teknologi 80(4): 135-146.
Nuriah, A.M., Ruslan,
R. & Wan, M.M.W.I. 2017. Pemodelan ruangan pelbagai jenis kegagalan cerun di Pulau Pinang menggunakan kaedah nisbah kekerapan. Geografi 5(2): 13-26.
Nuriah, A.M., Ruslan,
R. & Wan, M.M.W.I. 2016. Analisis taburan dan corak ruangan pelbagai jenis kegagalan cerun di Pulau Pinang, Malaysia. International
Journal of Environment, Society and Space 4(2): 1-15.
Ohlmacher, G.C. & Davis, J.C. 2003.
Using multiple logistic regression and GIS technology to predict landslide
hazard in northeast Kansa, USA. Eng. Geol. 2157: 1-13.
Oh, H.J. & Pradhan, B. 2011. Application of a neuro-fuzzy
model to landslide susceptibility mapping for shallow landslides in a tropical
hilly area. Comput. Geosci. 37: 1264-1276.
Pachauri, A.K., Gupta, P.V. & Chander,
R. 1998. Landslide zoning in a part of the Garhwal Himalayas. Environ. Geol. 36(3-4): 325-334.
Pham, B.T., Tien Bui, D., Pourghasemi,
H.R., Indra, P. & Dholakia, M.B. 2017. Landslide
susceptibility assessment in the Uttarakhand area
(India) using GIS: A comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and
functional trees methods. Theor. Appl. Climatol. 128: 255-273.
Piegari, E., Cataudella,
V., Di Maio, R., Milano, L., Nicodemi,
M. & Soldovieri, M.G. 2009. Electrical
resistivity tomography and statistical analysis in landslide modelling: A
conceptual approach. Journal of Applied Geophysics 68(2): 151-158.
Peng, M. & Zhang, L.M. 2012. Breaching parameters of landslide
dams. Landslides 9(1): 13-31.
Petley, D. 2017a. George Town:
Another serious landslide in Penang. The Landslide Blog - AGU Blogosphere.
5 November 2017. Diakses pada 1 April 2019.
Petley, D. 2017b. The Tanjung Bungah landslide: A very
challenging site. The Landslide Blog - AGU Blogosphere. 24 Oktober 2017. Diakses pada 1 April 2019.
Petley, D. 2018. George Town:
Another major fatal landslide in Penang, Malaysia. The Landslide Blog - AGU
Blogosphere. 24 Oktober 2018. Diakses pada 1 April 2019.
Pourghasemi, H.R., Jirandeh,
A.G., Pradhan, B., Xu, C. & Gokceoglu, C. 2013.
Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. Journal of Earth System Science 122(2): 349-369.
Pourtaghi, Z.S. & Pourghasemi, H.R. 2014. GIS-based groundwater spring
potential assessment and mapping in the birjand township, southern Khorasan province, Iran. Hydrogeol.
J. 22(3): 643-662.
Pradhan, B. 2010. Remote sensing and GIS-based landslide hazard
analysis and cross-validation using multivariate logistic regression model on
three test areas in Malaysia. Advances in Space Research 45(10):
1244-1256.
Pradhan, B. & Buchroithner, M.F.
2010. Comparison and validation of landslide susceptibility maps using an
artificial neural network model for three test areas in Malaysia. Environmental
& Engineering Geoscience 16(2): 107-126.
Pradhan, B., Lee, S., Mansor, S., Buchroithner, M., Jamaluddin, M.
& Khujaimah, Z. 2008. Utilization of optical
remote sensing data and geographic information system tools for regional
landslide hazard analysis by using binomial logistic regression model. J Appl Remote Sens 2: 1-11.
Raja, N.B., Cicek, I., Turkoglu, N., Aydin, O. & Kawasaki, A. 2017. Landslide
susceptibility mapping of the Sera River Basin using logistic regression model. Nat. Hazards. 85: 1323-1346.
Ramos-Canon, A.M., Prada-Sarmiento, L.F., Trujillo-Vela, M.G., Macías, J.P. & Santos-R, A.C. 2016. Linear discriminant
analysis to describe the relationship between rainfall and landslides in
Bogotá, Colombia. Landslides 13: 671-681.
Romeo, R. 2000. Seismically induced landslide displacements: A
predictive model. Eng. Geol. 58: 337-351.
Rece, A. & Capolongo,
D. 2002. Probabilistic modeling of uncertainties in earthquakeinduced landslide hazard assessment. Comput. Geosci. 28: 735-749.
Sahoo, S. 2009. A semi quantitative
landslide susceptibility assessment using logistic regression model and rock
mass classification system: Study in a part of Uttarakhand Himalaya, India. Thesis Master of Science. International Institute for
Geo-Information Science and Earth Observation Enshede the Netherlands (Tidak diterbitkan).
Sarkar, S. & Kanungo, D.P. 2004. An
integrated approach for landslide susceptibility mapping using remote sensing
and GIS. Photogram Eng. Remote Sensing 70(5): 617-625.
Sharma, L.P., Patel, N., Ghose, M.K.
& Debnath, P. 2014. Application of frequency
ratio and likelihood ratio model for geo-spatial modelling of landslide hazard
vulnerability assessment and zonation: A case study from the Sikkim Himalayas
in India. Geocarto International 29(2):
128-146.
Shou, K.J. & Yang, C.M. 2015.
Predictive analysis of landslide susceptibility under climate change conditions
- A study on the Chingshui River Watershed of Taiwan.
Engineering Geology 192: 46-62.
Simon, N., Juhari Mat Akhir, Azlikamil Napiah & Kee, T.H. 2009. Pemetaan potensi bencana tanah runtuh menggunakan faktor penilaian bencana tanah runtuh dengan pendekatan GIS. Geological Society of Malaysia 55:
47-53.
Suzen, M.L. & Kaya, B.S. 2011.
Evaluation of environmental parameters in logistic regression models for
landslide susceptibility mapping. International Journal of Digital Earth 5:
338-355.
Suzen, M.L. & Doyuran, V.A. 2004. Comparison of the GIS based landslide
susceptibility assessment methods: Multivariate versus bivariate. Environ.
Geol. 45: 665-679.
Tjia, H.D. 1987. Geomorfologi. Kuala Lumpur: Dewan Bahasa dan Pustaka.
Tsangaratos, P. & Ilia, I. 2016.
Landslide susceptibility mapping using a modified decision tree classifier in
the Xanthi Perfection, Greece. Landslides 13: 305-320.
Tunusluoglu, M.C., Gokceoglu,
C., Nefeslioglu, H.A. & Sonmez,
H. 2008. Extraction of potential debris source areas by logistic regression
technique: A case study from Barla, Besparmak and Kapi Mountains (NW
Taurids, Turkey). Environ. Geol. 54(1): 9-22.
Vahidnia, M.H., Alesheikh, A.A., Alimohammadi, A. & Hosseinali,
F. 2010. A GIS-based neuro-fuzzy procedure for integrating knowledge and data
in landslide susceptibility mapping. Comput. Geosci. 36: 1101-1114.
Van Westen,
C.J., Rengers, N. & Soeters,
R. 2003. Use of geomorphological information in indirect landslide susceptibility
assessment. Nat. Hazards 30: 399-413.
Wang, H.B. & Sassa, K. 2005. Comparative evaluation of landslide
susceptibility in Minamata area, Japan. Environmental
Geology 47(7): 956-966.
Wan Mohd Muhiyuddin, W.I. 2005. Pembentukan model ruangan kegagalan cerun bagi sub lembangan hulu Sungai Langat. Tesis PhD. Universiti Sains Malaysia (Tidak diterbitkan).
Yalcin, A. 2008. GIS-Based
landslides susceptibility mapping using analytical hierarchy process and
bivariate statistic in Ardesen (Turkey): Comparisons
of results and confirmations. Catena. 72(1): 1-12.
Yalcin, A. & Bulut, F. 2007. Landslide susceptibility mapping using gis and digital photogrammetric techniques: A case study
from Ardesen (NE-Turkey). Nat. Hazards 41:
201-226.
Yesilnacar, E. & Topal, T. 2005. Landslide susceptibility mapping: A
comparison of logistic regression and neural networks methods in a medium scale
study, Hendek region (Turkey). Engineering Geology 79: 251-266.
Youssef, A.M., Pradhan,
B., Gaber, A.F.D. & Buchroithner, M.F. 2009.
Geomorphological hazard analysis along the Egyptian red sea coast between Safaga and Quseir. Natural
Hazards and Earth System Sciences 9(3): 751-766.
Zezere, J.L., Pereira, S.,
Tavares, A.O., Bateira, C., Trigo,
R.M., Quaresma, I., Santos, P.P., Santos, M. &
Verde, J. 2014. Disaster: A GIS database on hydro-geomorphologic disasters in
Portugal. Nat. Hazards 72: 503-532.
Zhou, G., Esaki, T., Mitani, Y., Xie, M. & Mori,
J. 2003. Spatial probabilistic modeling of slope failure using an integrated
GIS Monte Carlo simulation approach. Engineering Geology 68(3): 373-386.
*Corresponding
author; email: nuriah@ukm.edu.my
|