Sains Malaysiana 48(7)(2019): 1539–1545
http://dx.doi.org/10.17576/jsm-2019-4807-23
A Short Review on
Cockle Shells as Biomaterials in the Context of Bone Scaffold Fabrication
(Kajian Ringkas Cengkerang
Kerang sebagai Bio-Bahan dalam Konteks Fabrikasi Perancah Tulang)
PENNY GEORGE1, ZARIYANTEY
ABDUL
HAMID1,
MD
ZUKI
ABU
BAKAR@ZAKARIA2,
ENOCH KUMAR
PERIMAL3
& HEMABARATHY BHARATHAM1*
1Biomedical
Science Programme, School of Health and Applied Sciences, Faculty of Health
Sciences Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300
Kuala Lumpur, Federal Territory, Malaysia
2Department
of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti
Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
3Department
of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti
Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
Received: 9
September 2018/Accepted: 11 April 2019
ABSTRACT
Cockle shells
contribute to a large amount of waste product in South East Asia due to the
extensive culturing of the mollusc for consumption. These nacreous materials in
the recent years have been gaining wider popularity due to its potential use as
biomaterials. As shown in various studies, cockle shell powder consists of
95-98% aragonite form of calcium carbonate (CaCO3).
The calcium carbonate obtained from cockle shells are easily converted into
nanoparticles, which have shown encouraging results in bone tissue grafting.
With the recent advancement in bone tissue engineering and development of a
newer generation of biomaterial based bone scaffolds, the cockle shell powder
has promising applications in the near future to be used in the formulation of
bone grafting materials. In this review, the use of biomaterials in bone tissue
grafting and nacreous materials as potential biomaterials with a focus on the
cockle shell and its recent advancement as the main component in the
formulation of a nanobiocomposite bone scaffold is discussed.
Keywords: Biomaterial;
bone tissue grafting; cockle shell
ABSTRAK
Kulit kerang menyumbang
kepada sejumlah besar sisa di Asia Tenggara disebabkan oleh industri ternakan
kerang yang berleluasa. Kebelakangan ini penggunaan bahan-bahan nakreus sebagai
salah satu jenis biobahan yang berpotensi tinggi semakin mendapat perhatian.
Hasil kajian sebelum ini menunjukkan bahawa kulit kerang mengandungi 96-98%
kalsium karbonat (CaCO3) dalam bentuk polimorf aragonite.
Fasa aragonite ini didapati mudah ditukar kepada fasa nano yang menunjukkan
hasil yang memberangsangkan dalam kejuruteraan tisu tulang. Dengan kemajuan
dalam bidang kejuruteraan tisu tulang serta pembangunan perancah tulang
generasi baru berasaskan biobahan, serbuk kulit kerang didapati sesuai
digunakan untuk pelbagai aplikasi termasuk formulasi bahan cantuman tulang.
Penggunaan biobahan untuk aplikasi kejuruteraan tisu tulang dan potensi
biobahan berasaskan bahan-bahan nakreus terutamanya kulit kerang serta
penggunaannya sebagai salah satu komponen utama dalam pembangunan perancah
tulang nanobiokomposit dibincangkan dalam ulasan ini.
Kata kunci: Biobahan; kulit kerang; penyambungan tisu tulang
REFERENCES
Ahmad, N.B., Hemabarathy, B., Hamid, Z.A. & Zulkipli, N.Z.
2017. Cytotoxicity and oxidative stress evaluation of alginate/ cockle shell
powder nanobiocomposite bone scaffold on osteoblast. Jurnal Sains Kesihatan
Malaysia 15: 97-103.
Asmi, D. & Zulfia, A. 2017. Blood cockle shells waste as
renewable source for the production of biogenic CaCO3 and
its characterisation. IOP Conference Series: Earth and Environmental Science 94: 012049.
Avila, G., Misch, K., Galindo-Moreno, P. & Wang, H.L. 2009. Implant
surface treatment using biomimetic agents. Implant Dentistry
18(1): 17-26.
Boey, P.L., Maniam, G.P., Hamid, S.A. & Ali, D.M.H. 2011.
Utilization of waste cockle shell (Anadara granosa) in biodiesel
production from palm olein: Optimization using response surface methodology. Fuel 90: 2353-2358.
Bose, S., Roy, M. & Bandyopadhyay, A. 2012. Recent advances in
bone tissue engineering scaffolds. Trends in Biotechnology 30(10):
546-554.
Budd, A., Mcdougall, C., Green, K. & Degnan, B.M. 2014. Control
of shell pigmentation by secretory tubules in the abalone mantle.
Frontiers in Zoology 11: 62.
Department
of Fisheries Malaysia (DOFM). 2014. Principal Statistics of Marine Fish
Landing, Aquaculture and Inland Fishery Production and Value, 1988 - 2014,
Malaysia. Department of Fisheries Malaysia, Putrajaya.
Felipe, E.A.M. 2015.
Investigation of gene family evolution and the molecular basis of shell
formation in molluscs. The University of Queensland, Australia (Unpublished).
Fukui,
Y. & Fujimoto, K. 2012. Bioinspired nanoreactor based on miniemulsion
system to create organic-inorganic hybrid nanoparticle and nanofilm. Journal
of Material Chemistry 22(8): 3493-3499.
Ghafar,
M.S.L., Hussein, M.Z., Rukayadi, Y. & Zakaria, M.Z.A.B. 2017.
Synthesis and characterization of cockle shell-based calcium carbonate
aragonite polymorph nanoparticles with surface functionalization.
Journal of Nanoparticle 2017: Article ID. 8196172.
Guowei,
Y., Wang, L. & Jianhua, H. 2009. The crystallization behavior of calcium
carbonate in ethanol/water solution containing mixed nonionic/anionic surfactants. Powder Technology 192(1): 58-64.
Haripal,
G.S. 2012. Preparation and characterization of PLA and PLGA scaffold and film.
Thesis of Master Degree in Life Science, Department of Life Science. National
Institute of Technology, Rourkela (Unpublished).
Hasan,
A., Waibhaw, G., Saxena, V. & Pandey, L.M. 2018. Nanobiocomposite scaffolds
of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose
nanowhiskers for bone tissue engineering applications. International Journal
of Biological Macromolecules 111: 923-934.
Hemabarathy,
B., Hamid, Z.A., Musa, M.F., Ahmad, N. & Perimal, E.K. 2017. Perbandingan
antara perancah tulang nanobiokomposit alginat/kulit kerang dan alginat/kalsium
karbonat terhadap pertumbuhan osteoblas. Jurnal Sains Kesihatan Malaysia 15(2):
1-7.
Hemabarathy,
B., Md. Zuki, A.B.Z., Perimal, E.K., Yusof, L.Q. & Hamid, M. 2014. Mineral
and physiochemical evaluation of cockle shell (Anadara granosa) and
other selected molluscan shell as potential biomaterials. Sains Malaysiana 43(7):
1023-1029.
Hench,
L.L. & Polak, J.M. 2002. Third-generation biomedical materials. Science 295(5557):
1014-1017.
Hoque,
E., Shehryar, M. & Islam, K.N. 2013. Material science & engineering
processing and characterization of cockle shell calcium carbonate (CaCO3)
bioceramic for potential application in bone tissue engineering. Journal of
Material Science and Engeneering 2: 2-6.
Ige,
O.O., Umoru, L.E. & Aribo, S. 2012. Natural products: A minefield of
biomaterials. ISRN Materials Science 2012: 1-20.
Islam,
K.N., Md Zuki, A.B.Z., Md Eaqub, A., Hussein, M.Z., Noordin, M.M., Loqman,
M.Y., Wahid, H., Hakim, M.A. & Hamid, S.B.A. 2012. Facile synthesis of
calcium carbonate nanoparticles from cockle shells. Journal of Nanomaterials 2012: 1-5.
Islam,
N., Md Zuki, A.B.Z., Md Eaqub, A., Hussein, M.Z., Noordin, M.M., Loqman, M.Y.,
Miah, G., Wahid, H. & Hashim, U. 2013. A novel method for the synthesis of
calcium carbonate (aragonite) nanoparticles from cockle shells. Powder
Technology 235: 70-75.
Jaji,
A.Z., Md Zuki, A.B.Z., Mahmud, R., Yusof, M.L., Mohamad, M.N.H., Isa, T., Fu.,
W. & Hammadi, N.I. 2017. Synthesis, characterization, and cytocompatibility
of potential cockle shell aragonite nanocrystals for osteoporosis therapy and
hormonal delivery. Nanotechnology, Science and Applications 10: 23-33.
Kakisawa,
H. & Sumitomo, T. 2011. The toughening mechanism of nacre and structural
materials inspired by nacre. Science and Technology of Advanced Materials 12:
064710.
Li,
H.Y., Ye, Q.T., Lu, Z., Yun, X.Z., Yi, H.S., Ying, Y. & Xia, M.S. 2012.
BioFiller from waste shellfish shell: Preparation, characterization, and its
effect on the mechanical properties on polypropylene composites. Journal of
Hazardous Materials 217-218: 256-262.
Li,
R.H. & Wozney, J.M. 2001. Delivering on the promise of bone morphogenetic
proteins. Trends in Biotechnology 19(7): 255-265.
Luginbuehl,
V., Meinel, L., Merkle, H.P. & Gander, B. 2004. Localized delivery of
growth factors for bone repair. European Journal of Pharmaceutics and
Biopharmaceutics 58(2): 197-208.
Marin,
F., Le Roy, N. & Marie, B. 2012. The formation and mineralization of
mollusk shell. Frontiers in Bioscience 4: 1099-1125.
McDougall,
C. & Bernard, M.D. 2018. The evolution of mollusc shells. Wiley
Interdisciplinary Reviews: Developmental Biology 7(3): 1-13.
Meyers,
M.A., Chen, P.Y., Lin, A.Y.M. & Seki, Y. 2008. Biological materials:
Structure and mechanical properties. Progress in Materials Science 53:
1-206.
Mohamed,
M., Yusup, S. & Maitra, S. 2012. Decomposition study of calcium carbonate
in cockle shells. Journal of Engineering Science and Technology 7(1):
1-10.
Muthusamy,
K., Sabri, N., Resources, E. & Razak, L.T. 2012. Cockle shell: A potential
partial coarse aggregate replacement in concrete. International Journal of
Science, Environment and Technology 1: 260-267.
Peter,
M., Binulal, N.S., Soumya, S., Nair, S.V., Furuike, T., Tamura, H. &
Jayakumar, R. 2010. Nanocomposite scaffolds of bioactive glass ceramic
nanoparticles disseminated chitosan matrix for tissue engineering applications. Carbohydrate Polymers 79(2): 284-289.
Perez-Sanchez,
M.J., Ramirez-Glindon, E., Lledo-Gil, M. & Calvo-Guirado, J.L. 2010.
Biomaterials for bone regeneration. Medicina Oral Patologia Oral y Cirugia
Bucal 15: 517-522.
Saffanah,
K.M., Md Zuki, A.B.Z., Intan, S.A.R., Loqman, M.Y., Alhaji, Z.J., Isa, T. &
Nahidah, I.H. 2017. Preparation and characterization of cockle shell aragonite
nanocomposite porous 3D scaffolds for bone repair. Biochemistry and
Biophysics Reports 10: 237-251.
Saidykhan,
L., Bakar, M.Z.B.A., Rukayadi, Y., Kura, A.U. & Latifah, S.Y. 2016.
Development of nanoantibiotic delivery system using cockle shell-derived
aragonite nanoparticles for treatment of osteomyelitis. International
Journal of Nanomedicine 11: 661-673.
Sari,
R.P., Hermanto, E., Divilia, D., Candra, I., Kuncoro, W. & Liswanti, T.
2016. Effects of Anadara granosa shell combined with Sardinella
longiceps oil on oesteoblast proliferation in bone defect healing process. Dental
Journal (Majalah Kedoktoran Gigi) 49: 27-xxx.
Scheller,
E.L., Krebsbach, P.H. & Kohn, D.H. 2009. Tissue engineering: State of the
art in oral rehabilitation. Journal of Oral Rehabilitation 36(5):
368-389.
Shafiu,
K.A., Ismail, M., Ibrahim, T.A.T. & Zakaria, Z.A.B. 2013. Synthesis and
characterisation of calcium carbonate aragonite nanocrystals from cockle shell
powder (Anadara granosa). Journal of Nanomaterials 2013: 398357.
Shafiu, K.A. &
Zakaria, Z.A.B. 2014. Osteoblasts growth behaviour on biobased calcium
carbonate aragonite nanocrystal. BioMed Research International 2014:
215097.
Sharma, C., Dinda, A.K., Potdar, P.D., Chou, C.F. &
Mishra, N.C. 2016. Fabrication and characterization of novel nanobiocomposite
scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue
engineering. Materials Science and Engineering C 64: 416-427.
Szabo,
K. 2008. Shell as a raw material: Mechanical properties and working techniques
in the tropical Indo-West Pacific. Archaeofauna 17: 125-138.
Taylor,
J.D., Kennedy, W.J. & Hall, A. 1969. The shell structure and mineralogy of
the Bivalvia. Introduction. Nuculacea - Trigonacea. Bulletin of the British
Museum (Natural History) Zoology 3(Suppl.): 3-125.
Vinther,
J., Sperling, E.A., Briggs, D.E.G. & Peterson, K.J. 2012. A molecular
palaeobiological hypothesis for the origin of aplacophoran molluscs and their
derivation from chiton-like ancestors. Proceedings of the Royal Society B 279:
1259-1268.
Williams,
S.T. 2016. Molluscan shell colour. Biological Reviews 92(2): 1039-1058.
Xie,
M., Olderøy, M., Andreassen, J.P., Selbach, S.M., Strand, B.L. & Sikorski,
P. 2010. Alginate-controlled formation of nanoscale calcium carbonate and
hydroxyapatite mineral phase within hydrogel networks. Acta Biomater 6:
3665- 3675.
Yin,
J., Zhang, S., Zhang, H.W. & Chen, B.S. 2016. Band structure
characteristics of nacreous composite materials with various defects. Zeitschrift
fur Naturforschung- Section A Journal of Physical Sciences 71: 493-499.
Yin,
J., Huang, J., Zhang, S., Zhang, H.W. & Chen, B.S. 2014. Ultrawide low
frequency band gap of phononic crystal in nacreous composite material. Physics
Letters, Section A: General, Atomic and Solid State Physics 378: 2436-2442.
Yurimoto,
T. 2014. Development of Blood Cockle Aquaculture Management Techniques in
Malaysia. Fisheries Division, JIRCAS.
Zhang,
J., Liu, W., Schnitzler, V., Tancret, F. & Bouler, J.M. 2014. Calcium
phosphate cements for bone substitution: Chemistry, handling and mechanical properties. Acta Biomaterialia 10: 1035-1049.
*Corresponding author; email:
hema@ukm.edu.my
|