Sains Malaysiana 48(7)(2019): 1539–1545

http://dx.doi.org/10.17576/jsm-2019-4807-23

 

A Short Review on Cockle Shells as Biomaterials in the Context of Bone Scaffold Fabrication

(Kajian Ringkas Cengkerang Kerang sebagai Bio-Bahan dalam Konteks Fabrikasi Perancah Tulang)

PENNY GEORGE1, ZARIYANTEY ABDUL HAMID1, MD ZUKI ABU BAKAR@ZAKARIA2, ENOCH KUMAR PERIMAL3 & HEMABARATHY BHARATHAM1*

 

1Biomedical Science Programme, School of Health and Applied Sciences, Faculty of Health Sciences Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Federal Territory, Malaysia

 

2Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

3Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

Received: 9 September 2018/Accepted: 11 April 2019

 

ABSTRACT

Cockle shells contribute to a large amount of waste product in South East Asia due to the extensive culturing of the mollusc for consumption. These nacreous materials in the recent years have been gaining wider popularity due to its potential use as biomaterials. As shown in various studies, cockle shell powder consists of 95-98% aragonite form of calcium carbonate (CaCO3). The calcium carbonate obtained from cockle shells are easily converted into nanoparticles, which have shown encouraging results in bone tissue grafting. With the recent advancement in bone tissue engineering and development of a newer generation of biomaterial based bone scaffolds, the cockle shell powder has promising applications in the near future to be used in the formulation of bone grafting materials. In this review, the use of biomaterials in bone tissue grafting and nacreous materials as potential biomaterials with a focus on the cockle shell and its recent advancement as the main component in the formulation of a nanobiocomposite bone scaffold is discussed.

 

Keywords: Biomaterial; bone tissue grafting; cockle shell

 

ABSTRAK

Kulit kerang menyumbang kepada sejumlah besar sisa di Asia Tenggara disebabkan oleh industri ternakan kerang yang berleluasa. Kebelakangan ini penggunaan bahan-bahan nakreus sebagai salah satu jenis biobahan yang berpotensi tinggi semakin mendapat perhatian. Hasil kajian sebelum ini menunjukkan bahawa kulit kerang mengandungi 96-98% kalsium karbonat (CaCO3) dalam bentuk polimorf aragonite. Fasa aragonite ini didapati mudah ditukar kepada fasa nano yang menunjukkan hasil yang memberangsangkan dalam kejuruteraan tisu tulang. Dengan kemajuan dalam bidang kejuruteraan tisu tulang serta pembangunan perancah tulang generasi baru berasaskan biobahan, serbuk kulit kerang didapati sesuai digunakan untuk pelbagai aplikasi termasuk formulasi bahan cantuman tulang. Penggunaan biobahan untuk aplikasi kejuruteraan tisu tulang dan potensi biobahan berasaskan bahan-bahan nakreus terutamanya kulit kerang serta penggunaannya sebagai salah satu komponen utama dalam pembangunan perancah tulang nanobiokomposit dibincangkan dalam ulasan ini.

 

Kata kunci: Biobahan; kulit kerang; penyambungan tisu tulang

REFERENCES

Ahmad, N.B., Hemabarathy, B., Hamid, Z.A. & Zulkipli, N.Z. 2017. Cytotoxicity and oxidative stress evaluation of alginate/ cockle shell powder nanobiocomposite bone scaffold on osteoblast. Jurnal Sains Kesihatan Malaysia 15: 97-103.

Asmi, D. & Zulfia, A. 2017. Blood cockle shells waste as renewable source for the production of biogenic CaCO3 and its characterisation. IOP Conference Series: Earth and Environmental Science 94: 012049.

Avila, G., Misch, K., Galindo-Moreno, P. & Wang, H.L. 2009. Implant surface treatment using biomimetic agents. Implant Dentistry 18(1): 17-26.

Boey, P.L., Maniam, G.P., Hamid, S.A. & Ali, D.M.H. 2011. Utilization of waste cockle shell (Anadara granosa) in biodiesel production from palm olein: Optimization using response surface methodology. Fuel 90: 2353-2358.

Bose, S., Roy, M. & Bandyopadhyay, A. 2012. Recent advances in bone tissue engineering scaffolds. Trends in Biotechnology 30(10): 546-554.

Budd, A., Mcdougall, C., Green, K. & Degnan, B.M. 2014. Control of shell pigmentation by secretory tubules in the abalone mantle. Frontiers in Zoology 11: 62.

Department of Fisheries Malaysia (DOFM). 2014. Principal Statistics of Marine Fish Landing, Aquaculture and Inland Fishery Production and Value, 1988 - 2014, Malaysia. Department of Fisheries Malaysia, Putrajaya.

Felipe, E.A.M. 2015. Investigation of gene family evolution and the molecular basis of shell formation in molluscs. The University of Queensland, Australia (Unpublished).

Fukui, Y. & Fujimoto, K. 2012. Bioinspired nanoreactor based on miniemulsion system to create organic-inorganic hybrid nanoparticle and nanofilm. Journal of Material Chemistry 22(8): 3493-3499.

Ghafar, M.S.L., Hussein, M.Z., Rukayadi, Y. & Zakaria, M.Z.A.B. 2017. Synthesis and characterization of cockle shell-based calcium carbonate aragonite polymorph nanoparticles with surface functionalization. Journal of Nanoparticle 2017: Article ID. 8196172.

Guowei, Y., Wang, L. & Jianhua, H. 2009. The crystallization behavior of calcium carbonate in ethanol/water solution containing mixed nonionic/anionic surfactants. Powder Technology 192(1): 58-64.

Haripal, G.S. 2012. Preparation and characterization of PLA and PLGA scaffold and film. Thesis of Master Degree in Life Science, Department of Life Science. National Institute of Technology, Rourkela (Unpublished).

Hasan, A., Waibhaw, G., Saxena, V. & Pandey, L.M. 2018. Nanobiocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. International Journal of Biological Macromolecules 111: 923-934.

Hemabarathy, B., Hamid, Z.A., Musa, M.F., Ahmad, N. & Perimal, E.K. 2017. Perbandingan antara perancah tulang nanobiokomposit alginat/kulit kerang dan alginat/kalsium karbonat terhadap pertumbuhan osteoblas. Jurnal Sains Kesihatan Malaysia 15(2): 1-7.

Hemabarathy, B., Md. Zuki, A.B.Z., Perimal, E.K., Yusof, L.Q. & Hamid, M. 2014. Mineral and physiochemical evaluation of cockle shell (Anadara granosa) and other selected molluscan shell as potential biomaterials. Sains Malaysiana 43(7): 1023-1029.

Hench, L.L. & Polak, J.M. 2002. Third-generation biomedical materials. Science 295(5557): 1014-1017.

Hoque, E., Shehryar, M. & Islam, K.N. 2013. Material science & engineering processing and characterization of cockle shell calcium carbonate (CaCO3) bioceramic for potential application in bone tissue engineering. Journal of Material Science and Engeneering 2: 2-6.

Ige, O.O., Umoru, L.E. & Aribo, S. 2012. Natural products: A minefield of biomaterials. ISRN Materials Science 2012: 1-20.

Islam, K.N., Md Zuki, A.B.Z., Md Eaqub, A., Hussein, M.Z., Noordin, M.M., Loqman, M.Y., Wahid, H., Hakim, M.A. & Hamid, S.B.A. 2012. Facile synthesis of calcium carbonate nanoparticles from cockle shells. Journal of Nanomaterials 2012: 1-5.

Islam, N., Md Zuki, A.B.Z., Md Eaqub, A., Hussein, M.Z., Noordin, M.M., Loqman, M.Y., Miah, G., Wahid, H. & Hashim, U. 2013. A novel method for the synthesis of calcium carbonate (aragonite) nanoparticles from cockle shells. Powder Technology 235: 70-75.

Jaji, A.Z., Md Zuki, A.B.Z., Mahmud, R., Yusof, M.L., Mohamad, M.N.H., Isa, T., Fu., W. & Hammadi, N.I. 2017. Synthesis, characterization, and cytocompatibility of potential cockle shell aragonite nanocrystals for osteoporosis therapy and hormonal delivery. Nanotechnology, Science and Applications 10: 23-33.

Kakisawa, H. & Sumitomo, T. 2011. The toughening mechanism of nacre and structural materials inspired by nacre. Science and Technology of Advanced Materials 12: 064710.

Li, H.Y., Ye, Q.T., Lu, Z., Yun, X.Z., Yi, H.S., Ying, Y. & Xia, M.S. 2012. BioFiller from waste shellfish shell: Preparation, characterization, and its effect on the mechanical properties on polypropylene composites. Journal of Hazardous Materials 217-218: 256-262.

Li, R.H. & Wozney, J.M. 2001. Delivering on the promise of bone morphogenetic proteins. Trends in Biotechnology 19(7): 255-265.

Luginbuehl, V., Meinel, L., Merkle, H.P. & Gander, B. 2004. Localized delivery of growth factors for bone repair. European Journal of Pharmaceutics and Biopharmaceutics 58(2): 197-208.

Marin, F., Le Roy, N. & Marie, B. 2012. The formation and mineralization of mollusk shell. Frontiers in Bioscience 4: 1099-1125.

McDougall, C. & Bernard, M.D. 2018. The evolution of mollusc shells. Wiley Interdisciplinary Reviews: Developmental Biology 7(3): 1-13.

Meyers, M.A., Chen, P.Y., Lin, A.Y.M. & Seki, Y. 2008. Biological materials: Structure and mechanical properties. Progress in Materials Science 53: 1-206.

Mohamed, M., Yusup, S. & Maitra, S. 2012. Decomposition study of calcium carbonate in cockle shells. Journal of Engineering Science and Technology 7(1): 1-10.

Muthusamy, K., Sabri, N., Resources, E. & Razak, L.T. 2012. Cockle shell: A potential partial coarse aggregate replacement in concrete. International Journal of Science, Environment and Technology 1: 260-267.

Peter, M., Binulal, N.S., Soumya, S., Nair, S.V., Furuike, T., Tamura, H. & Jayakumar, R. 2010. Nanocomposite scaffolds of bioactive glass ceramic nanoparticles disseminated chitosan matrix for tissue engineering applications. Carbohydrate Polymers 79(2): 284-289.

Perez-Sanchez, M.J., Ramirez-Glindon, E., Lledo-Gil, M. & Calvo-Guirado, J.L. 2010. Biomaterials for bone regeneration. Medicina Oral Patologia Oral y Cirugia Bucal 15: 517-522.

Saffanah, K.M., Md Zuki, A.B.Z., Intan, S.A.R., Loqman, M.Y., Alhaji, Z.J., Isa, T. & Nahidah, I.H. 2017. Preparation and characterization of cockle shell aragonite nanocomposite porous 3D scaffolds for bone repair. Biochemistry and Biophysics Reports 10: 237-251.

Saidykhan, L., Bakar, M.Z.B.A., Rukayadi, Y., Kura, A.U. & Latifah, S.Y. 2016. Development of nanoantibiotic delivery system using cockle shell-derived aragonite nanoparticles for treatment of osteomyelitis. International Journal of Nanomedicine 11: 661-673.

Sari, R.P., Hermanto, E., Divilia, D., Candra, I., Kuncoro, W. & Liswanti, T. 2016. Effects of Anadara granosa shell combined with Sardinella longiceps oil on oesteoblast proliferation in bone defect healing process. Dental Journal (Majalah Kedoktoran Gigi) 49: 27-xxx.

Scheller, E.L., Krebsbach, P.H. & Kohn, D.H. 2009. Tissue engineering: State of the art in oral rehabilitation. Journal of Oral Rehabilitation 36(5): 368-389.

Shafiu, K.A., Ismail, M., Ibrahim, T.A.T. & Zakaria, Z.A.B. 2013. Synthesis and characterisation of calcium carbonate aragonite nanocrystals from cockle shell powder (Anadara granosa). Journal of Nanomaterials 2013: 398357.

Shafiu, K.A. & Zakaria, Z.A.B. 2014. Osteoblasts growth behaviour on biobased calcium carbonate aragonite nanocrystal. BioMed Research International 2014: 215097.

Sharma, C., Dinda, A.K., Potdar, P.D., Chou, C.F. & Mishra, N.C. 2016. Fabrication and characterization of novel nanobiocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering. Materials Science and Engineering C 64: 416-427.

Szabo, K. 2008. Shell as a raw material: Mechanical properties and working techniques in the tropical Indo-West Pacific. Archaeofauna 17: 125-138.

Taylor, J.D., Kennedy, W.J. & Hall, A. 1969. The shell structure and mineralogy of the Bivalvia. Introduction. Nuculacea - Trigonacea. Bulletin of the British Museum (Natural History) Zoology 3(Suppl.): 3-125.

Vinther, J., Sperling, E.A., Briggs, D.E.G. & Peterson, K.J. 2012. A molecular palaeobiological hypothesis for the origin of aplacophoran molluscs and their derivation from chiton-like ancestors. Proceedings of the Royal Society B 279: 1259-1268.

Williams, S.T. 2016. Molluscan shell colour. Biological Reviews 92(2): 1039-1058.

Xie, M., Olderøy, M., Andreassen, J.P., Selbach, S.M., Strand, B.L. & Sikorski, P. 2010. Alginate-controlled formation of nanoscale calcium carbonate and hydroxyapatite mineral phase within hydrogel networks. Acta Biomater 6: 3665- 3675.

Yin, J., Zhang, S., Zhang, H.W. & Chen, B.S. 2016. Band structure characteristics of nacreous composite materials with various defects. Zeitschrift fur Naturforschung- Section A Journal of Physical Sciences 71: 493-499.

Yin, J., Huang, J., Zhang, S., Zhang, H.W. & Chen, B.S. 2014. Ultrawide low frequency band gap of phononic crystal in nacreous composite material. Physics Letters, Section A: General, Atomic and Solid State Physics 378: 2436-2442.

Yurimoto, T. 2014. Development of Blood Cockle Aquaculture Management Techniques in Malaysia. Fisheries Division, JIRCAS.

Zhang, J., Liu, W., Schnitzler, V., Tancret, F. & Bouler, J.M. 2014. Calcium phosphate cements for bone substitution: Chemistry, handling and mechanical properties. Acta Biomaterialia 10: 1035-1049.

 

*Corresponding author; email: hema@ukm.edu.my

 

 

previous