Sains Malaysiana 48(7)(2019):
1557–1563
http://dx.doi.org/10.17576/jsm-2019-4807-25
Outlier Detection in
Multiple Circular Regression Model using DFFITC Statistic
(Pengesanan Nilai
Tersisih dalam Model Regresi Berkeliling Berganda menggunakan Statistik DFFITc)
NAJLA AHMED ALKASADI1, SAFWATI IBRAHIM1*, ALI H. M. ABUZAID2, MOHD IRWAN YUSOFF3, HASHIBAH HAMID4, LEOW WAI ZHE5 & AMELIA BT ABD RAZAK5
1Institute of Engineering
Mathematics, Universiti Malaysia Perlis, Pauh Putra Main Campus, 02600 Arau,
Perlis Indera Kayangan, Malaysia
2Department of
Mathematics, Faculty of Science, Al-Azhar University-Gaza, Palestine
3Center for Diploma
Studies, S2-L1-26, Kampus Uniciti Sungai Chuchuh, Universiti Malaysia Perlis, 02100
Padang Besar (U), Perlis Indera Kayangan, Malaysia
4School of Quantitative
Sciences, College of Arts & Sciences, Universiti Utara Malaysia (UUM), 06010
UUM Sintok, Kedah Darul Aman, Malaysia
5School of Electrical
System Engineering, Universiti Malaysia Perlis, Pauh Putra Main Campus, 02600
Arau, Perlis Indera Kayangan, Malaysia
Received:
16 October 2018/Accepted: 3 May 2019
ABSTRACT
This paper presents the
identification of outliers in multiple circular regression model (MCRM),
where the model studies the relationship between two or more circular
variables. To date, most of the published papers concentrating on detecting
outliers in circular samples and simple circular regression model with one
independent circular variable. However, no related studies have been found for
more than one independent circular variable. The existence of outliers could
alert the sign and change the magnitude of regression coefficients and may lead
to inaccurate model development and wrong prediction. Hence, the intention is
to develop an outlier detection procedure using DFFITS statistic for circular case. This method has been successfully
used in multiple linear regression model. Therefore, the DFFITc statistic for circular variable has been derived. The
corresponding critical values and the performance of the procedure are studied
via simulations. The results of simulation studies show that the proposed
statistic perform well in detecting outliers in MCRM using DFFITc statistic. The proposed statistic was applied
to a real data for illustration purposes.
Keywords: Circular
data; circular regression model; DFFITS; outlier
ABSTRAK
Kertas ini
membentangkan pengesanan nilai tersisih dalam model regresi berkeliling
berganda (MCRM) dengan model tersebut mengkaji hubungan antara dua
atau lebih pemboleh ubah berkeliling. Sehingga kini, kebanyakan kertas yang
diterbitkan menumpukan ke atas pengesanan nilai tersisih dalam sampel
berkeliling dan model regresi berkeliling ringkas untuk satu pemboleh ubah tak bersandar.
Walau bagaimanapun, tiada kajian yang berkaitan telah dijumpai untuk lebih
daripada satu pemboleh ubah berkeliling tak bersandar. Kewujudan nilai tersisih
dapat memberi isyarat tanda dan mengubah perubahan magnitud pekali regresi dan
mungkin menyebabkan pembangunan model yang tidak tepat dan ramalan yang salah.
Oleh itu, objektif kajian adalah untuk membangunkan kaedah pengesanan nilai
tersisih menggunakan statistik DFFITS untuk kes berkeliling. Kaedah ini telah berjaya digunakan dalam
model regresi linear berganda. Oleh itu, statistik DFFITc untuk pemboleh ubah berkeliling telah diterbitkan. Nilai
genting sepadan dan prestasi prosedur dikaji melalui simulasi. Hasil kajian
simulasi menunjukkan bahawa statistik yang dicadangkan menunjukkan prestasi yang
baik dalam mengesan nilai tersisih di dalam MCRM menggunakan
statistik DFFITc. Statistik yang dicadangkan diaplikasikan
kepada data sebenar untuk tujuan ilustrasi.
Kata kunci: Data berkeliling; DFFITS; model
regresi berkeliling; nilai tersisih
REFERENCES
Abuzaid, A.H., Hussin,
A.G. & Mohamed, I.B. 2013. Detection of outliers in simple circular
regression models using the mean circular error statistic. Journal of
Statistical Computation and Simulation 83(2): 269-277.
Abuzaid, A., Mohamed,
I., Hussin, A.G. & Rambli, A. 2011. COVRATIO statistic for simple circular
regression model. Chiang Mai International Journal of Science and Technology 38(3): 321-330.
Abuzaid, A.H., Mohamed,
I.B. & Hussin, A.G. 2009. A new test of discordancy in circular data. Communications
in Statistics- Simulation and Computation 38(4): 682-691.
Alkasadi, N.A., Abuzaid,
A.H., Ibrahim, S. & Yusoff, M.I. 2018. Outliers detection in multiple
circular regression models via DFBETAc statistic. International
Journal of Applied Engineering Research 13(11): 9083-9090.
Alkasadi, N.A., Ibrahim,
S., Ramli, M.F. & Yusoff, M.I. 2016. A comparative study of outlier
detection procedures in multiple circular regression. AIP Conference
Proceedings 1775(1): 030032.
Ampanthong, P. &
Suwattee, P. 2009. A comparative study of outlier detection procedures in
multiple linear regression. In Proceedings of the International
MultiConference of Engineers and Computer Scientists Volume 1.
Beckman, R.J. &
Cook, R.D. 1983. Outlier………. s. Technometrics 25(2): 119-149.
Belsley, D.A., Kuh, E.
& Welsch, R.E. 1980. Regression Diagnostic: Identifying Influential Data
and Sources of Collinearity. New York: John Wiley & Sons.
Cousineau, D. &
Chartier, S. 2010. Outliers detection and treatment: A review. International
Journal of Psychological Research 3(1): 58-67.
Hussin, A.G., Abuzaid,
A.H., Ibrahim, A.I.N. & Rambli, A. 2013. Detection of outliers in the
complex linear regression model. Sains Malaysiana 42(6): 869-874.
Ibrahim, S. 2013. Some
Outlier Problems in a Circular Regression Model. PhD Thesis, University of
Malaya (Unpublished).
Ibrahim, S., Rambli, A.,
Hussin, A.G. & Mohamed, I. 2013. Outlier detection in a circular regression
model using COVRATIO statistic. Communications in Statistics-
Simulation and Computation 42(10): 2272-2280.
Peña, D. 1990.
Influential observations in time series. Journal of Business & Economic
Statistics 8(2): 235-241.
Rambli, A., Yunus, R.M.,
Mohamed, I. & Hussin, A.G. 2015. Outlier detection in a circular regression
model. Sains Malaysiana 44(7): 1027-1032.
Rambli, A., Ibrahim, S.,
Abdullah, M.I., Mohamed, I. & Hussin, A.G. 2012. On discordance test for
the wrapped normal data. Sains Malaysiana 41(6): 769-778.
Rousseeuw, P.J. &
Leroy, A.M. 2005. Robust Regression and Outlier Detection. New York:
John Wiley & Sons.
Wong, C. 1992. Diagnostic
and Influence Measures in Linear Regression. PhD Thesis. Simon Fraser
University (Unpublished).
Zakaria, A., Howard,
N.K. & Nkansah, B.K. 2014. On the detection of influential outliers in
linear regression analysis. American Journal of Theoretical and Applied
Statistics 3(4): 100-106.
*Corresponding author;
email: isafwati@gmail.com
|