Sains Malaysiana 48(8)(2019):
1753–1759
http://dx.doi.org/10.17576/jsm-2019-4808-22
Synthesis and
Characterizations of Hydrophilic pHEMA Nanoparticles via Inverse
Miniemulsion Polymerization
(Sintesis dan Pencirian
Zarah Nano Hidrofil pHEMA melalui Pempolimeran
Miniemulsi Songsang)
ZALIKHA ISMAIL1 & NOOR ANIZA HARUN1,2*
1Faculty
of Science & Marine Environment, Universiti Malaysia Terengganu,
21030 Kuala Nerus, Terengganu Darul Iman, Malaysia
2Advance
NanoMaterials (ANOMA) Research Group, Universiti Malaysia Terengganu, 21030
Kuala Nerus, Terengganu Darul Iman, Malaysia
Received:
7 February 2019/Accepted: 26 May 2019
ABSTRACT
This study highlights
on the development of hydrophilic polymer nanoparticles prepared via inverse miniemulsion polymerization, a robust technique to
prepare hydrophilic and aqueous-soluble polymeric nanoparticles. 2-hydroxyethyl
methacrylate (HEMA) is excellent candidate for homo-polymerization due
to its biocompatibility and biodegradability characteristic with high
hydrophilicity properties. The influence of synthesis parameters including the
effects of sonication time ranging from 10 - 30 min and sonication amplitude up
to 60% towards the particles size and morphology of pHEMA nanoparticles
are investigated. The formation of pHEMA nanoparticles are
confirmed by Fourier Transform Infrared (FTIR). The morphology of
polymer nanoparticles has been determined using Scanning Electron Microscope (SEM)
and Transmission Electron Microscopy (TEM). Dynamic light scattering (DLS)
indicates the mean diameters of pHEMA nanoparticles were in a
range of 100 – 200 nm. The hydrophilic polymer nanoparticles obtained are
expected to facilitate in the fabrication of inorganic-polymer composite
nanoparticles especially in biological applications.
Keywords: HEMA;
hydrophilic; inverse miniemulsion; nanoparticles
ABSTRAK
Kajian ini menonjolkan
pembangunan zarah nano polimer dengan ciri hidrofil yang lebih baik
yang disediakan melalui pempolimeran miniemulsi songsang, suatu
teknik yang teguh untuk menyediakan zarah nano polimer hidrofil
dan larut akueus. 2-hidroksi metakrilat (HEMA) adalah bahan yang sangat baik untuk pempolimeran-homo
kerana sifat biokeserasian dan biodegradasi dengan sifat hidrofil
yang tinggi. Pengaruh parameter sintesis termasuk kesan masa sonikasi
antara 10 - 30 min dan amplifikasi sonikasi sehingga 60% ke arah
saiz zarah dan morfologi zarah nano pHEMA dikaji. Pembentukan zarah
nano pHEMA disahkan oleh Spektroskopi Inframerah
Transformasi Fourier (FTIR). Morfologi zarah nano polimer
telah ditentukan menggunakan Mikroskop Elektron Imbasan (SEM)
dan Mikroskop Elektron Transmisi (TEM). Penyebaran cahaya dinamik
(DLS)
menunjukkan diameter purata zarah nano pHEMA berada
dalam lingkungan 100 - 200 nm. Zarah nano polimer hidrofilik yang
diperoleh dijangka memudahkan dalam fabrikasi zarah nano komposit
polimer-bukan organik terutamanya dalam aplikasi biologi.
Kata kunci: HEMA; hidrofilik; pempolimeran songsang; zarah
nano
REFERENCES
Antonietti,
M. & Landfester, K. 2002. Polyreactions in miniemulsions. Progress in
Polymer Science 27(4): 689-757.
Bajpai,
A.K., Shukla, S.K., Bhanu, S. & Kankane, S. 2008. Responsive polymers in
controlled drug delivery. Progress in Polymer Science 33: 1088-1118.
Bodas,
D.S., Desai, S.M. & Gangal, S.A. 2005. Desposition of plasma-polymerized
hydroxhethyl methacrylate (HEMA) on silicon in presnce of argon plasma. Applied
Surface Science 245: 186-190.
Cao,
Z., Yang, L., Yan, Y., Shang, Y., Ye, Q., Qi, D., Zierner, U., Shan, G. &
Landfester, K. 2013. Fabrication of nanogel core-silica shell and hollow silica
nanoparticles via an interfacial sol-gel process triggered by transition-metal
salt in inverse systems. Journal of Colloid and Interface Science 406:
139-147.
Capek,
I. 2010. On inverse miniemulsion polymerization of conventional water-soluble
monomers. Advances in Colloid and Interface Science 156(1-2): 35-61.
Chen,
M. & Yin, M. 2014. Design and development of fluorescent nanostructures for
bioimaging. Progress in Polymer Science 39(2): 365-395.
Elbert,
D.L. 2011. Liquid-liquid two-phase systems for the production of porous
hydrogels and hydrogel microspheres for biomedical applications: A tutorial
review. Acta Biomaterial 7(1): 31-56.
Faridi-Majidi,
R., Sharifi-Sanjani, N. & Agend, F. 2006. Encapsulation of magnetic
nanoparticles with polystyrene via emulsifier-free miniemulsion polymerization. Thin Solid Films 515(1): 368-374.
Gao,
Q., Wang, C., Liu, H., Wang, C., Liu, X. & Tong, Z. 2009. Suspension
polymerization based on inverse pickering emulsion droplets for
thermo-sensitive hybrid microcapsules with tunable supracolloidal structures. Polymer 50(12): 2587-2594.
Gavasane,
A.J. & Pawar, H.A. 2014. Synthetic biodegradable polymers used in controlled
drug delivery system: An overview. Clinical Pharmacology &
Biopharmaceutics 3(2): 1-7.
Ghosh,
P.K. 2000. Hydrophilic polymeric nanoparticles as drug carriers. Indian
Journal of Biochemistry & Biophysics 37: 273-282.
Gulsen,
D. & Chauhan, A. 2005. Dispersion of microemulsion drops in HEMA hydrogel:
A potential ophthalmic drug delivery vehicle. International Journal of
Pharmaceutics 292(1-2): 95-117.
Han,
H., Zhang, S., Wang, Y., Chen, T., Jin, Q., Chen, Y., Li, A. & Ji, J. 2016.
Biomimetic drug nanocarriers prepared by miniemulsion polymerization for
near-infrared imaging and photothermal therapy. Polymer 82: 255-261.
Harun,
N.A., Horrocks, B.R. & Fulton, D.A. 2011. A miniemulsion polymerization
technique for encapsulation of silicon quantum dots in polymer nanoparticles. Nanoscale 3(11): 4733-4741.
Holmes,
R.L., Campbell, J.A., Linser, R., Hook, J.M. & Burford, R.P. 2011. In
situ preparation of poly(2-hydroxyethyl methacrylate)-titania hybrids using
γ-radiation. Polymer 52: 4471-4479.
Ismail,
Z., Kassim, S. & Harun, N.A. 2017. Development of hydrophilic poly
(N-vinylpyrrolidone) nanoparticles via inverse miniemulsion
polymerization technique. AIP Conference Proceedings 1885(1): 020079.
Koul,
V., Mohamed, R., Kuckling, D., Adler, H.J.P. & Choudhary, V. 2011.
Interpenetrating polymer network (IPN) nanogels based on gelation and
poly(acrylic acid) by inverse miniemulsion technique: Synthesis and
characterization. Colloids and Surfaces B: Biointerfaces 83(2): 204-213.
Mirzadeh,
H., Katbab, A.A., Khorasani, M.T., Burford, R.P., Gorgin, E. & Golestani,
A. 1995. Cell attachment to laser-induced AAm and HEMA-grafted
ethylene-propylene rubber as biomaterials: In vivo study. Biomaterials 16(8): 641-648.
Muthiah,
M., Park, I.K. & Cho, C.S. 2013. Surface modification of iron oxide
nanoparticles by biocompatible polymers for tissue imaging and targeting. Biotechnology
Advances 31(8): 1224-1236.
Oh,
J.K., Bencherif, S.A. & Matyjaszewski, K. 2009. Atom transfer radical
polymerization in inverse miniemulsion: A versatile route toward preparation
and functionalization of microgels/nanogels for tageted drug delivery
applications. Polymer 50(19): 4407-4423.
Oh,
J.K., Dong, H., Zhang, R., Matyjaszewski, K. & Schlaad, H. 2007.
Preparation of nanoparticles of double-hydrophilic PEO-PHEMA block
copolymers by AGET ATRP in inverse miniemulsion. Journal of Polymer
Science Part A: Polymer Chemistry 45(21): 4764-4772.
Oh,
J.K., Tang, C., Gao, H., Tsarevsky, N.V. & Krzysztof, M. 2006. Inverse
miniemulsion ATRP: A new method for synthesis and functionalization of
well-defined water-soluble/ cross-linked polymeric particles. Journal of the
American Chemical Society 128(16): 5578-5584.
Pandey,
S.K., Haldar, C., Patel, D.K. & Maiti, P. 2013. Biodegradable polymers for
potential delivery systems for therapeutics. In Multifaceted Development and
Application of Biopolymers for Biology, Biomedicine and Nanotechnology,
Advances in Polymer Science, edited by Dutta P. & Dutta, J. Berlin,
Heidelberg: Springer. Volume 254. pp. 169-202.
Rao,
J.P. & Geckeler, K.E. 2011. Polymer nanoparticles: Preparation techniques
and size control parameters. Progress in Polymer Science 36(7): 887-913.
Richez,
A.P., Yow, H.N., Biggs, S. & Cayre, O.J. 2013. Dispersion polymerization in
non-polar solvent: Evolution toward emerging applications. Progress in
Polymer Science 38(6): 897-931.
Sarika,
P.R., Anil Kumar, P.R., Raj, D.K. & James, N.R. 2015. Nanogels based n
alginic aldehyde and gelatin by inverse miniemulsion technique: Synthesis and
characterization. Carbohydrate Polymers 119: 118-125.
Seven,
F. & Sahiner, N. 2014. Modified macroporous p(2- hydroexyethyl
methacrylate) (PHEMA) cryogel composites for H2 production
from hydrolysis of NaBH4. Fuel Processing
Technology 128: 394-401.
Srivastava,
A., Yadav, T., Sharma, S., Nayak, A. & Kumari, A. 2016. Polymers in drug
delivery. Journal of Biosciences and Medicines 4: 69-84.
Tian, H., Tang, Z.,
Zhuang, X., Chen, X. & Jing, X. 2012. Biodegradable synthetic polymers:
Preparation, functionalization and biomedical
application. Progress in Polymer Science 37(2): 237-280
Tomar, N., Tomar, M.,
Gulati, N. & Nagaich, U. 2012. pHEMA hydrogels: Devices for ocular drug
delivery. International Journal of Health & Allied Sciences 1(4):
224-230.
Xu, Z.Z., Wang, C.C.,
Yang, W.L., Deng, Y.H. & Fu, S.K. 2004. Encapsulation of nanosized magnetic
iron oxide by polyacrylamide via inverse miniemulsion polymerization. Journal
of Magnetism and Magnetic Materials 277: 136-143.
Yildiz, U. &
Landfester, K. 2008. Miniemulsion polymerization of styrene in the presence of
macromonomeric initiators. Polymer 49(23): 4930-4934.
*Corresponding
author; email: nooraniza@umt.edu.my
|