Sains Malaysiana 48(8)(2019): 1761–1769

http://dx.doi.org/10.17576/jsm-2019-4808-23

 

Variable Order Block Method for Solving Second Order Ordinary Differential Equations

(Kaedah Blok Peringkat Berubah untuk Penyelesaian Persamaan Pembezaan Biasa Peringkat Kedua)

ZARINA BIBI IBRAHIM1,2, NOORAINI ZAINUDDIN3*, KHAIRIL ISKANDAR OTHMAN4,

MOHAMED SULEIMAN2 & ISKANDAR SHAH MOHD ZAWAWI5

 

1Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

2Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

3Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS (UTP), 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia

 

4Department of Mathematics, Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

 

5Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Seremban Campus, 70300 Seremban, Negeri Sembilan Darul Khusus, Malaysia

 

Received: 1 February 2019/Accepted: 7 May 2019

 

ABSTRACT

This paper proposed 2-point block backward differentiation formulas (BBDF) of order 3, 4, and 5 for direct solution of second order ordinary differential equations. These methods were derived via backward difference interpolation polynomial with two solutions are produced simultaneously at each step. All the three different orders of 2-point BBDF is implemented in variable order scheme. The scheme utilizes the local truncation error, which is generated by the single order of 2-point BBDF method. Numerical results are presented to illustrate the validity of the proposed scheme.

 

Keywords: Block method; initial value problem; second order ODEs; variable order

 

ABSTRAK

Kertas ini membangunkan formula 2-titik blok pembezaan kebelakang (FBPK) peringkat 3, 4, dan 5 untuk menyelesaikan persamaan pembezaan biasa peringkat kedua. Kaedah ini diterbitkan melalui polinomial interpolasi beza kebelakang dengan dua penyelesaian diberikan secara serentak untuk setiap langkah. Ketiga-tiga peringkat 2-titik FBPK dijalankan dengan skema peringkat berubah. Skema ini menggunakan ralat pangkasan setempat, yang dijanakan oleh setiap peringkat kaedah 2-titik FBPK. Keputusan berangka ditunjukkan untuk menggambarkan kesahihan skema yang dicadangkan.

 

Kata kunci: Kaedah blok; masalah nilai awal; PBB peringkat kedua; peringkat berubah

REFERENCES

Chawla, M.M. & Sharma, S.R. 1985. Families of three-stage third order Runge-Kutta-Nyström methods for = f (x, y, yʹ). The Journal of the Australian Mathematical Society 26: 375-386.

Chien, L.K., Din, U.K.S. & Ahmad, R.R. 2018. Solution of third order ordinary differential equation using improved block hybrid collocation method. Sains Malaysiana 47(9): 2179-2186.

Denk, G. 1993. A new numerical method for the integration of highly oscillatory second-order ordinary differential equations. Applied Numerical Mathematics 13: 57-67.

Fang, Y., Song, Y. & Wu, X. 2009. A robust trigonometrically fitted embedded pair for perturbed oscillators. Journal of Computational and Applied Mathematics 225: 347-355.

Fatunla, S.O. 1991. Block method for second order ODEs. International Journal of Computer Mathematics 41: 55-63.

Gear, C.W. 1967. The numerical integration of ordinary differential equations. Mathematics of Computation 21: 146-156.

Henrici, P. 1962. Discrete Variable Methods in Ordinary Differential Equations. New York: John Wiley and Sons.

Ibrahim, Z.B., Othman, K.I. & Suleiman, M.B. 2007. Implicit r-point block backward differentiation formula for solving first-order stiff ODEs. Applied Mathematics and Computation 186: 558-565.

Ibrahim, Z.B., Othman, K.I. & Suleiman, M.B. 2012. 2-Point block predictor-corrector of backward differentiation formulas for solving second order ordinary differential equations directly. Chiang Mai Journal of Science 39(3): 502-510.

Ismail, F., Ahmad, S.Z., Jikantoro, Y.D. & Senu, N. 2018. Block hybrid method with trigonometric-fitting for solving oscillatory problems. Sains Malaysiana 47(9): 2223-2230.

Ismail, F., Hussain, K. & Senu, N. 2016. A sixth-order RKFD method with four-stage for directly solving special fourth-order ODEs. Sains Malaysiana 45(11): 1747-1754.

Jator, S.N. & Li, J. 2009. A self-starting linear multistep method for a direct solution of the general second-order initial value problem. International Journal of Computer Mathematics 86(5): 827-836.

Jator, S.N. 2010. Solving second order initial value problems by a hybrid multistep method without predictors. Applied Mathematics and Computation 217: 4036-4046.

Jator, S.N., Akinfenwa, A.O., Okunuga, S.A. & Sofoluwe, A.B. 2013. High-order continuous third derivative formulas with block extensions for = f (x, y, yʹ). International Journal of Computer Mathematics 90(9): 1899-1914.

Kambo, N.S., Jain, R.K. & Goel, R. 1983. A fourth order method for = f (x, y, yʹ). Journal of Computational and Applied Mathematics 9: 81-90.

Lambert, J.D. & Watson, I.A. 1976. Symmetric multistep methods for periodic initial value problems. IMA Journal of Applied Mathematics 18: 189-202.

Milne, W.E. 1953. Numerical Solution of Differential Equations. New York: John Wiley & Sons.

Sagir, A.M. 2013. An accurate computation of block hybrid method for solving stiff ordinary differential equations. World Academy of Science, Engineering and Technology 7: 321-324.

Sesappa Rai, A. & Ananthakrishnaiah, U. 1996. Additive parameters methods for the numerical integration of = f (t, y, yʹ). Journal of Computational and Applied Mathematics 67: 271-276.

Waeleh, N. & Majid, Z.A. 2017. Numerical algorithm of block method for general second order odes using variable step size. Sains Malaysiana 46(5): 817-824.

Zainuddin, N., Ibrahim, Z.B. & Othman, K.I. 2014. Diagonally implicit block backward differentiation formula for solving linear second order ordinary differential equations. AIP Conference Proceedings 1621: 69-75.

 

*Corresponding author; email: aini_zainuddin@utp.edu.my

 

 

previous