Sains Malaysiana 48(8)(2019): 1761–1769
http://dx.doi.org/10.17576/jsm-2019-4808-23
Variable Order Block Method
for Solving Second Order Ordinary Differential Equations
(Kaedah Blok Peringkat
Berubah untuk Penyelesaian Persamaan Pembezaan Biasa Peringkat Kedua)
ZARINA BIBI IBRAHIM1,2, NOORAINI ZAINUDDIN3*, KHAIRIL ISKANDAR OTHMAN4,
MOHAMED SULEIMAN2 & ISKANDAR SHAH MOHD ZAWAWI5
1Department of
Mathematics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor
Darul Ehsan, Malaysia
2Institute for
Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor
Darul Ehsan, Malaysia
3Department of
Fundamental and Applied Sciences, Universiti Teknologi PETRONAS (UTP), 32610
Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
4Department of
Mathematics, Faculty of Computer and Mathematical Sciences, Universiti
Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
5Faculty of Computer and
Mathematical Sciences, Universiti Teknologi MARA, Seremban Campus, 70300
Seremban, Negeri Sembilan Darul Khusus, Malaysia
Received:
1 February 2019/Accepted: 7 May 2019
ABSTRACT
This paper proposed
2-point block backward differentiation formulas (BBDF)
of order 3, 4, and 5 for direct solution of second order ordinary differential
equations. These methods were derived via backward difference interpolation
polynomial with two solutions are produced simultaneously at each step. All the
three different orders of 2-point BBDF is implemented in variable
order scheme. The scheme utilizes the local truncation error, which is
generated by the single order of 2-point BBDF method. Numerical results
are presented to illustrate the validity of the proposed scheme.
Keywords: Block method;
initial value problem; second order ODEs; variable order
ABSTRAK
Kertas ini membangunkan
formula 2-titik blok pembezaan kebelakang (FBPK)
peringkat 3, 4, dan 5 untuk menyelesaikan persamaan pembezaan biasa peringkat
kedua. Kaedah ini diterbitkan melalui polinomial interpolasi beza kebelakang
dengan dua penyelesaian diberikan secara serentak untuk setiap langkah.
Ketiga-tiga peringkat 2-titik FBPK dijalankan dengan skema
peringkat berubah. Skema ini menggunakan ralat pangkasan setempat, yang
dijanakan oleh setiap peringkat kaedah 2-titik FBPK.
Keputusan berangka ditunjukkan untuk menggambarkan kesahihan skema yang
dicadangkan.
Kata kunci: Kaedah
blok; masalah nilai awal; PBB peringkat kedua;
peringkat berubah
REFERENCES
Chawla, M.M. &
Sharma, S.R. 1985. Families of three-stage third order Runge-Kutta-Nyström
methods for yʺ = f (x, y, yʹ). The Journal of
the Australian Mathematical Society 26: 375-386.
Chien, L.K., Din, U.K.S.
& Ahmad, R.R. 2018. Solution of third order ordinary differential equation
using improved block hybrid collocation method. Sains Malaysiana 47(9):
2179-2186.
Denk, G. 1993. A new
numerical method for the integration of highly oscillatory second-order
ordinary differential equations. Applied Numerical Mathematics 13:
57-67.
Fang, Y., Song, Y. &
Wu, X. 2009. A robust trigonometrically fitted embedded pair for perturbed
oscillators. Journal of Computational and Applied Mathematics 225:
347-355.
Fatunla, S.O. 1991.
Block method for second order ODEs. International Journal of Computer
Mathematics 41: 55-63.
Gear, C.W. 1967. The
numerical integration of ordinary differential equations. Mathematics of
Computation 21: 146-156.
Henrici, P. 1962. Discrete
Variable Methods in Ordinary Differential Equations. New York: John Wiley
and Sons.
Ibrahim, Z.B., Othman,
K.I. & Suleiman, M.B. 2007. Implicit r-point block backward differentiation
formula for solving first-order stiff ODEs. Applied Mathematics and
Computation 186: 558-565.
Ibrahim, Z.B., Othman,
K.I. & Suleiman, M.B. 2012. 2-Point block predictor-corrector of backward
differentiation formulas for solving second order ordinary differential
equations directly. Chiang Mai Journal of Science 39(3): 502-510.
Ismail, F., Ahmad, S.Z.,
Jikantoro, Y.D. & Senu, N. 2018. Block hybrid method with
trigonometric-fitting for solving oscillatory problems. Sains Malaysiana 47(9):
2223-2230.
Ismail, F., Hussain, K.
& Senu, N. 2016. A sixth-order RKFD method with four-stage for directly
solving special fourth-order ODEs. Sains Malaysiana 45(11): 1747-1754.
Jator, S.N. & Li, J.
2009. A self-starting linear multistep method for a direct solution of the
general second-order initial value problem. International Journal of
Computer Mathematics 86(5): 827-836.
Jator, S.N. 2010.
Solving second order initial value problems by a hybrid multistep method
without predictors. Applied Mathematics and Computation 217: 4036-4046.
Jator, S.N., Akinfenwa,
A.O., Okunuga, S.A. & Sofoluwe, A.B. 2013. High-order continuous third
derivative formulas with block extensions for yʺ = f (x,
y, yʹ). International Journal of Computer Mathematics 90(9):
1899-1914.
Kambo, N.S., Jain, R.K.
& Goel, R. 1983. A fourth order method for yʺ = f (x,
y, yʹ). Journal of Computational and Applied Mathematics 9:
81-90.
Lambert, J.D. &
Watson, I.A. 1976. Symmetric multistep methods for periodic initial value
problems. IMA Journal of Applied Mathematics 18: 189-202.
Milne, W.E. 1953. Numerical
Solution of Differential Equations. New York: John Wiley & Sons.
Sagir, A.M. 2013. An
accurate computation of block hybrid method for solving stiff ordinary
differential equations. World Academy of Science, Engineering and Technology 7: 321-324.
Sesappa Rai, A. &
Ananthakrishnaiah, U. 1996. Additive parameters methods for the numerical
integration of yʺ = f (t, y, yʹ). Journal of
Computational and Applied Mathematics 67: 271-276.
Waeleh, N. & Majid,
Z.A. 2017. Numerical algorithm of block method for general second order odes
using variable step size. Sains Malaysiana 46(5): 817-824.
Zainuddin, N., Ibrahim,
Z.B. & Othman, K.I. 2014. Diagonally implicit block backward
differentiation formula for solving linear second order ordinary differential
equations. AIP Conference Proceedings 1621: 69-75.
*Corresponding
author; email: aini_zainuddin@utp.edu.my
|