Sains Malaysiana 49(11)(2020): 2773-2783
http://dx.doi.org/10.17576/jsm-2020-4911-16
Validation of Emotional Stimuli Flashcards for
Conducting ‘Response to Reward’ fMRI Study among Malaysian Undergraduates
(Pengesahan Kad Imbasan Rangsangan Emosi untuk Menjalankan Kajian ‘Tindak Balas terhadap Ganjaran’ fMRI dalam Kalangan Mahasiswa Malaysia)
NISHA SYED
NASSER1,2, HAMED SHARIFAT1, AIDA ABDUL RASHID2, SUZANA
AB HAMID2, EZAMIN ABDUL RAHIM2,
MAZLYFARINA MOHAMAD3, ROHIT TYAGI4, SITI IRMA FADHILAH ISMAIL5, CHING SIEW MOOI6 & SUBAPRIYA SUPPIAH1,2*
1Centre
for Diagnostic Nuclear Imaging, Faculty of Medicine and Health Sciences, 43400
UPM Serdang, Universiti Putra Malaysia, Malaysia
2Department
of Radiology, Faculty of Medicine and Health Sciences, 43400 UPM Serdang, Universiti Putra
Malaysia, Malaysia
3Center for Diagnostic, Therapeutic & Investigative Studies, Faculty
of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala
Lumpur, Federal Territory, Malaysia
4Aerobe
Pte. Ltd., Singapore
5Department
of Psychiatry, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
6Department
of Family Medicine,Faculty of Medicine and Health Sciences, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
Received: 16 August 2019/Accepted: 17 May 2020
ABSTRACT
Problematic Instagram Use (PIGU) is a
specific Internet addiction disorder observed among the youth of today.
Functional magnetic resonance imaging (fMRI) can objectively assess regional
brain activation in response to addiction-specific rewards, e.g. viewing
picture flashcards. Pictures that were uploaded onto Instagram by users with
PIGU issue have often been associated with risky behaviors in their efforts to
gain more 'Likes'. Thus, it was hypothesized that individuals with PIGU issue
are more drawn to negative emotional cues. To date, no literature on
addiction-specific cues found on the local database. The objective of this
study was to conduct an out-of-scanner validation study to create a database of
pictures with negative emotional cues that evoke responses of arousal among
individuals with PIGU issue. Forty-four Malaysian undergraduates (20
undergraduates in the PIGU group, 24 undergraduates in the control group) were
randomly recruited as the subjects in the present study. They were grouped into
PIGU or control groups based on the evaluation using the Smartphone-Addiction-Scale-Malay
version (SAS-M) and modified Instagram Addiction Test (IGAT) and whether they
fulfilled the definition of addiction according to Lin et al. (2016). They were
administered with 200 content-specific pictures that were multidimensional, i.e.
arousal (excitation or relaxation effects), approach-avoidance (motivational
direction) and emotional valence (positive or negative feelings) to describe
their perceptions on the psychological properties of the pictures using a
9-point Likert scale. The results showed that the subjects with PIGU issue, who viewed the negative emotional
cues, demonstrated significant positive correlations between arousal and
valence (z = 4.834, p < .001, effect size = 0.69) and arousal and avoidance-approach (z = 4.625, p <
.001, effect size = 0.66) as
compared to the controls and were more frequently aroused by negative emotional type of
stimuli. As a conclusion, a database of validated, addiction-specific pictures
can be developed to potentiate any future cue-induced response to reward fMRI
studies for assessing PIGU.
Keywords: Addiction; affective ratings;
cravings; picture database; reward
ABSTRAK
Penggunaan Instagram yang Bermasalah (PIGU) adalah sejenis gangguan khusus ketagihan Internet dalam kalangan belia masa kini. Pengimejan resonans magnet kefungsian (fMRI) dapat menilai pengaktifan otak serantau sebagai tindak balas terhadap ganjaran khusus ketagihan, contohnya melihat gambar kad imbasan. Gambar yang dimuatnaik dalam aplikasi Instagram oleh pengguna yang mempunyai isu PIGU sering dikaitkan dengan kelakuan berisiko dalam usaha mereka mengaut ‘Likes’, maka hipotesis kami ialah individu yang mempunyai isu PIGU akan lebih tertarik kepada gambar rangsangan emosi negatif. Sehingga kini, tidak terdapat mana-mana pangkalan data tempatan dengan set gambar-gambar ketagihan yang berkaitan dengan PIGU yang boleh menimbulkan rasa teruja. Objektif kajian ini ialah untuk menjalankan kajian pengesahan di luar mesin MRI untuk mewujudkan pangkalan data gambar yang membawa isyarat emosi negatif yang dapat merangsangkan individu yang mempunyai isu PIGU. Empat-puluh-empat pelajar siswazah Malaysia (20 siswazah dalam kumpulan PIGU, 24 siswazah dalam kumpulan kawalan) telah dipilih melalui persampelan rawak mudah sebagai subjek dalam kajian ini. Penarafan persepsi dilakukan berdasarkan (kesan teruja atau relaks), dan pendekatan-menghindari (motivasi pergerakan) dan valensi (emosi positif atau negatif). Keputusan kajian menunjukkan subjek yang mempunyai isu PIGU mempunyai korelasi positif yang signifikan terhadap rangsangan dan valensi (z = 4.834, p <
.001, saiz kesan = 0.69) dan pendekatan rangsangan dan menghindari (z = 4.625, p < .001, saiz kesan = 0.66) berbanding subjek kawalan apabila melihat gambar emosi negatif. Kesimpulannya, pangkalan data gambar-gambar khusus ketagihan yang disahkan dapat menimbulkan keinginan dan motivasi untuk mendekati individu yang mempunyai isu PIGU yang dapat dikaji menggunakan fMRI pada masa hadapan.
Kata kunci: Ganjaran; keghairahan; ketagihan; pangkalan data; penilaian affektif
REFERENCES
American Psychiatric Association.
2013. Diagnostic and Statistical Manual
of Mental Disorders. Washington, DC.
Bechara,
A. 2004. The role of emotion in decision-making: evidence from neurological
patients with orbitofrontal damage. Brain
and Cognition 55(1): 30-40.
Bechara,
A., Dolan, S. & Hindes, A. 2002. Decision-making and addiction (part II):
Myopia for the future or hypersensitivity to reward? Neuropsychologia 40(10): 1690-1705.
Billieux,
J. 2012. Problematic use of the mobile phone: A literature review and a
pathways model. Current Psychiatry
Reviews 8(4): 299-307.
Brand,
M., Young, K.S., Laier, C., Wölfling, K. & Potenza, M.N. 2016. Integrating
psychological and neurobiological considerations regarding the development and
maintenance of specific Internet-use disorders: An interaction of
person-affect-cognition-execution (I-PACE) model. Neuroscience & Biobehavioral Reviews 71: 252-266.
Capra,
F. 1996. The Web of Life: A New
Scientific Understanding of Living Systems. New York: Anchor Books.
Chakraborty,
A. 2016. Facebook addiction: An emerging problem. American Journal of Psychiatry Residents' Journal 11(12): 7-9.
Ching,
S.M., Yee, A., Ramachandran, V., Sazlly Lim, S.M., Wan Sulaiman, W.A., Foo,
Y.L. & Hoo, F.K. 2015. Validation of a Malay version of the smartphone
addiction scale among medical students in Malaysia. PLoS ONE 10(10): e0139337.
Cohen,
J. & Cohen, P. 1983. Applied Multiple
Regression/Correlation Analysis for the Behavioral Sciences. Hillsdale, New
Jersey: Erlbaum.
Duncan,
D. & Petosa, R. 1994. Social and community factors associated with drug use
and abuse among adolescents. In Substance
Misuse in Adolescence. Thousand Oaks, CA: Sage.
Feldman-Barrett,
L., Mesquita, B., Ochsner, K.N. & Gross, J.J. 2006. The experience of
emotion. Annual Review of Psychology 58(1): 373-403.
Gilet,
A.L., Grühn, D., Studer, J. & Labouvie-Vief, G. 2012. Valence, arousal, and
imagery ratings for 835 French attributes by young, middle-aged, and older
adults: The French emotional evaluation list (FEEL). Revue Européenne de Psychologie Appliquée/European Review of Applied
Psychology 62(3): 173-181.
Glover,
G.H. 2011. Overview of functional magnetic resonance imaging. Neurosurgery Clinics of North America 22(2): 133-139.
Grühn,
D. & Scheibe, S. 2008. Age-related differences in valence and arousal
ratings of pictures from the international affective picture system (IAPS): Do
ratings become more extreme with age? Behavior
Research Methods 40: 512-521.
Huettel,
S.A., Song, A.W. & McCarthy, G. 2014. Functional
Magnetic Resonance Imaging. 3rd ed. Sunderland, M.A.: Sinauer Assosiates,
Inc.
James,
J.S., Rajesh, P., Chandran, A.V. & Kesavadas, C. 2014. fMRI paradigm
designing and post-processing tools. The
Indian Journal of Radiology & Imaging 24(1): 13-21.
Kather,
J.N., Weidner, A., Attenberger, U., Bukschat, Y., Weis, C.A., Weis, M., Schad,
L.R. & Zöllner, F.G. 2017. Color-coded visualization of magnetic resonance
imaging multiparametric maps. Scientific
Reports 7: 41107.
Khalid,
N.L., Jayasainan, S.Y. & Hassim, N. 2018. Social media influencers -
shaping consumption culture among Malaysian youth. In SHS Web of Conferences. pp. 1-12.
Kim,
J.E., Son, J.W., Choi, W.H., Kim, Y.R., Oh, J.H., Lee, S. & Kim, J.K. 2014.
Neural responses to various rewards and feedback in the brains of adolescent
Internet addicts detected by functional magnetic resonance imaging. Psychiatry and Clinical Neurosciences 68(6): 463-470.
Ko,
C.H., Liu, G.C., Hsiao, S., Yen, J.Y., Yang, M.J., Lin, W.C., Yen, C.F. &
Chen, C.S. 2009. Brain activities associated with gaming urge of online gaming
addiction. Journal of Psychiatric
Research 43(7): 739-747.
Kurniawan,
Y., Habsari, S.K. & Nurhaeni, I.D.A. 2017. Selfie culture: Investigating
the patterns and various expressions of dangerous selfies and the possibility
of government’s intervention. In The 2nd
Journal of Government and Politics International Conference. pp. 324-332.
Lin,
Y.H., Chiang, C.L., Lin, P.H., Chang, L.R., Ko, C.H., Lee, Y.H. & Lin, S.H.
2016. Proposed diagnostic criteria for smartphone addiction. PLoS ONE 11(11): e0163010.
Lindquist,
M.A., Loh, J.M., Atlas, L.Y. & Wager, T.D. 2009. Modeling the hemodynamic
response function in fMRI: Efficiency, bias and mis-modeling. NeuroImage 45(1 Suppl): S187-S198.
Marchewka,
A., Zurawski, L., Jednorog, K. & Grabowska, A. 2014. The Nencki affective
picture system (NAPS): Introduction to a novel, standardized, wide-range,
high-quality, realistic picture database. Behavior
Research Methods 46(2): 596-610.
Mauss,
I.B. & Robinson, M.D. 2009. Measures of emotion: A review. Cognition & Emotion 23(2): 209-237.
Nisha,
S.N., Fathinul Fikri, A.S., Aida, A.R., Salasiah, M., Hamed, S., Rohit, T.,
Amei Farina, A.R., Loh, J.L., Mazlyfarina, M. & Subapriya, S. 2020. The
objective assessment of the effects on cognition functioning among military
personnel exposed to hypobaric-hypoxia: A pilot fMRI study. Medical Journal of Malaysia 75(1):
62-67.
Nisha,
S.N., Ling, L.J., Aida, A.R., Sharifat, H., Hamid, S.A., Rahim, E.A., Andrew,
B.N., Mustafa, S., Mooi, C.S. & Suppiah, S. 2019. Assessment of problematic
facebook use among undergraduate students in UPM correlated with depression,
anxiety and stress. International Journal
of Public Health and Clinical Sciences 6(4): 113-132.
Niu,
G.F., Sun, X.J., Subrahmanyam, K., Kong, F.C., Tian, Y. & Zhou, Z.K. 2016.
Cue-induced craving for Internet among Internet addicts. Addictive Behaviors 62: 1-5.
Preacher, K.J. 2002. Calculation for the test of the difference between two independent correlation coefficients. http://quantpsy.org. Accessed on May 8, 2019.
Robinson,
T.E. & Berridge, K.C. 2008. Review. The incentive sensitization theory of
addiction: Some current issues. Philosophical
Transactions of The Royal Society of London. Series B, Biological Sciences 363(1507): 3137-3146.
Sharifat,
H., Rashid, A.A. & Suppiah, S. 2018. Systematic review of the utility of
functional MRI to investigate internet addiction disorder: Recent updates on
resting state and task-based fMRI. Malaysian
Journal of Medicine and Health Sciences 14(1): 21-33.
Sherman,
L.E., Greenfield, P.M., Hernandez, L.M. & Dapretto, M. 2018. Peer influence
via instagram: Effects on brain and behavior in adolescence and young
adulthood. Child Development 89(1):
37-47.
Sherman,
L.E., Payton, A.A., Hernandez, L.M., Greenfield, P.M. & Dapretto, M. 2016.
The power of the like in adolescence: Effects of peer influence on neural and
behavioral responses to social media. Psychological
Science 27(7): 1027-1035.
Sinha,
R. & Li, C.S.R. 2007. Imaging stress- and cue-induced drug and alcohol
craving: Association with relapse and clinical implications. Drug and Alcohol Review 26(1): 25-31.
Sun,
Y., Ying, H., Seetohul, R.M., Xuemei, W., Ya, Z., Qian, L., Guoqing, X. &
Ye, S. 2012. Brain fMRI study of crave induced by cue pictures in online game
addicts (male adolescents). Behavioral
Brain Research 233(2): 563-576.
Volkow,
N.D., Koob, G.F. & McLellan, A.T. 2016. Neurobiologic advances from the
brain disease model of addiction. The New
England Journal of Medicine 374(4): 363-371.
Volkow,
N.D., Wang, G.J., Fowler, J.S., Tomasi, D., Telang, F. & Baler, R. 2010.
Addiction: Decreased reward sensitivity and increased expectation sensitivity
conspire to overwhelm the brain's control circuit. Bioessays 32(9): 748-755.
Zhang,
J.T., Yao, Y.W., Potenza, M.N., Xia, C.C., Lan, J., Liu, L., Wang, L.J., Liu,
B., Ma, S.S. & Fang, X.Y. 2016. Effects of craving behavioral intervention
on neural substrates of cue-induced craving in Internet gaming disorder. Neuroimage: Clinical 12: 591-599.
Zhou,
Y., Zhan, J. & Luo, J. 2017. Predicting multiple risky behaviors via
multimedia content. 10540: 65-73.
*Corresponding
author; email: subapriya@upm.edu.my
|