Sains Malaysiana 49(11)(2020): 2773-2783

http://dx.doi.org/10.17576/jsm-2020-4911-16

 

Validation of Emotional Stimuli Flashcards for Conducting ‘Response to Reward’ fMRI Study among Malaysian Undergraduates

(Pengesahan Kad Imbasan Rangsangan Emosi untuk Menjalankan KajianTindak Balas terhadap Ganjaran’ fMRI dalam Kalangan Mahasiswa Malaysia)

 

NISHA SYED NASSER1,2, HAMED SHARIFAT1, AIDA ABDUL RASHID2, SUZANA AB HAMID2, EZAMIN ABDUL RAHIM2, MAZLYFARINA MOHAMAD3, ROHIT TYAGI4, SITI IRMA FADHILAH ISMAIL5, CHING SIEW MOOI6 & SUBAPRIYA SUPPIAH1,2*

 

1Centre for Diagnostic Nuclear Imaging, Faculty of Medicine and Health Sciences, 43400 UPM Serdang, Universiti Putra Malaysia, Malaysia

 

2Department of Radiology, Faculty of Medicine and Health Sciences, 43400 UPM Serdang, Universiti Putra Malaysia, Malaysia

 

3Center for Diagnostic, Therapeutic & Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Federal Territory, Malaysia

 

4Aerobe Pte. Ltd., Singapore

 

5Department of Psychiatry, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

6Department of Family Medicine,Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

Received: 16 August 2019/Accepted: 17 May 2020

 

ABSTRACT

Problematic Instagram Use (PIGU) is a specific Internet addiction disorder observed among the youth of today. Functional magnetic resonance imaging (fMRI) can objectively assess regional brain activation in response to addiction-specific rewards, e.g. viewing picture flashcards. Pictures that were uploaded onto Instagram by users with PIGU issue have often been associated with risky behaviors in their efforts to gain more 'Likes'. Thus, it was hypothesized that individuals with PIGU issue are more drawn to negative emotional cues. To date, no literature on addiction-specific cues found on the local database. The objective of this study was to conduct an out-of-scanner validation study to create a database of pictures with negative emotional cues that evoke responses of arousal among individuals with PIGU issue. Forty-four Malaysian undergraduates (20 undergraduates in the PIGU group, 24 undergraduates in the control group) were randomly recruited as the subjects in the present study. They were grouped into PIGU or control groups based on the evaluation using the Smartphone-Addiction-Scale-Malay version (SAS-M) and modified Instagram Addiction Test (IGAT) and whether they fulfilled the definition of addiction according to Lin et al. (2016). They were administered with 200 content-specific pictures that were multidimensional, i.e. arousal (excitation or relaxation effects), approach-avoidance (motivational direction) and emotional valence (positive or negative feelings) to describe their perceptions on the psychological properties of the pictures using a 9-point Likert scale. The results showed that the subjects with PIGU issue, who viewed the negative emotional cues, demonstrated significant positive correlations between arousal and valence (z = 4.834, p < .001, effect size = 0.69) and arousal and avoidance-approach (z = 4.625, p < .001, effect size = 0.66) as compared to the controls and were more frequently aroused by negative emotional type of stimuli. As a conclusion, a database of validated, addiction-specific pictures can be developed to potentiate any future cue-induced response to reward fMRI studies for assessing PIGU.

 

Keywords: Addiction; affective ratings; cravings; picture database; reward

 

ABSTRAK

Penggunaan Instagram yang Bermasalah (PIGU) adalah sejenis gangguan khusus ketagihan Internet dalam kalangan belia masa kini.  Pengimejan resonans magnet kefungsian (fMRI) dapat menilai pengaktifan otak serantau sebagai tindak balas terhadap ganjaran khusus ketagihan, contohnya melihat gambar kad imbasan. Gambar yang dimuatnaik dalam aplikasi Instagram oleh pengguna yang mempunyai isu PIGU sering dikaitkan dengan kelakuan berisiko dalam usaha mereka mengaut ‘Likes’, maka hipotesis kami ialah individu yang mempunyai isu PIGU akan lebih tertarik kepada gambar rangsangan emosi negatif. Sehingga kini, tidak terdapat mana-mana pangkalan data tempatan dengan set gambar-gambar ketagihan yang berkaitan dengan PIGU yang boleh menimbulkan rasa teruja. Objektif kajian ini ialah untuk menjalankan kajian pengesahan di luar mesin MRI untuk mewujudkan pangkalan data gambar yang membawa isyarat emosi negatif yang dapat merangsangkan individu yang mempunyai isu PIGU. Empat-puluh-empat pelajar siswazah Malaysia (20 siswazah dalam kumpulan PIGU, 24 siswazah dalam kumpulan kawalan) telah dipilih melalui persampelan rawak mudah sebagai subjek dalam kajian ini. Penarafan persepsi dilakukan berdasarkan (kesan teruja atau relaks), dan pendekatan-menghindari (motivasi pergerakan) dan valensi (emosi positif atau negatif). Keputusan kajian menunjukkan subjek yang mempunyai isu PIGU mempunyai korelasi positif yang signifikan terhadap rangsangan dan valensi (z = 4.834, p < .001, saiz kesan = 0.69) dan pendekatan rangsangan dan menghindari (z = 4.625, p < .001, saiz kesan = 0.66) berbanding subjek kawalan apabila melihat gambar emosi negatif. Kesimpulannya, pangkalan data gambar-gambar khusus ketagihan yang disahkan dapat menimbulkan keinginan dan motivasi untuk mendekati individu yang mempunyai isu PIGU yang dapat dikaji menggunakan fMRI pada masa hadapan.

Kata kunci: Ganjaran; keghairahan; ketagihan; pangkalan data; penilaian affektif

 

REFERENCES

 

American Psychiatric Association. 2013. Diagnostic and Statistical Manual of Mental Disorders. Washington, DC.

Bechara, A. 2004. The role of emotion in decision-making: evidence from neurological patients with orbitofrontal damage. Brain and Cognition 55(1): 30-40.

Bechara, A., Dolan, S. & Hindes, A. 2002. Decision-making and addiction (part II): Myopia for the future or hypersensitivity to reward? Neuropsychologia 40(10): 1690-1705.

Billieux, J. 2012. Problematic use of the mobile phone: A literature review and a pathways model. Current Psychiatry Reviews 8(4): 299-307.

Brand, M., Young, K.S., Laier, C., Wölfling, K. & Potenza, M.N. 2016. Integrating psychological and neurobiological considerations regarding the development and maintenance of specific Internet-use disorders: An interaction of person-affect-cognition-execution (I-PACE) model. Neuroscience & Biobehavioral Reviews 71: 252-266.

Capra, F. 1996. The Web of Life: A New Scientific Understanding of Living Systems. New York: Anchor Books.

Chakraborty, A. 2016. Facebook addiction: An emerging problem. American Journal of Psychiatry Residents' Journal 11(12): 7-9.

Ching, S.M., Yee, A., Ramachandran, V., Sazlly Lim, S.M., Wan Sulaiman, W.A., Foo, Y.L. & Hoo, F.K. 2015. Validation of a Malay version of the smartphone addiction scale among medical students in Malaysia. PLoS ONE 10(10): e0139337.

Cohen, J. & Cohen, P. 1983. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences. Hillsdale, New Jersey: Erlbaum.

Duncan, D. & Petosa, R. 1994. Social and community factors associated with drug use and abuse among adolescents. In Substance Misuse in Adolescence. Thousand Oaks, CA: Sage.

Feldman-Barrett, L., Mesquita, B., Ochsner, K.N. & Gross, J.J. 2006. The experience of emotion. Annual Review of Psychology 58(1): 373-403.

Gilet, A.L., Grühn, D., Studer, J. & Labouvie-Vief, G. 2012. Valence, arousal, and imagery ratings for 835 French attributes by young, middle-aged, and older adults: The French emotional evaluation list (FEEL). Revue Européenne de Psychologie Appliquée/European Review of Applied Psychology 62(3): 173-181.

Glover, G.H. 2011. Overview of functional magnetic resonance imaging. Neurosurgery Clinics of North America 22(2): 133-139.

Grühn, D. & Scheibe, S. 2008. Age-related differences in valence and arousal ratings of pictures from the international affective picture system (IAPS): Do ratings become more extreme with age? Behavior Research Methods 40: 512-521.

Huettel, S.A., Song, A.W. & McCarthy, G. 2014. Functional Magnetic Resonance Imaging. 3rd ed. Sunderland, M.A.: Sinauer Assosiates, Inc.

James, J.S., Rajesh, P., Chandran, A.V. & Kesavadas, C. 2014. fMRI paradigm designing and post-processing tools. The Indian Journal of Radiology & Imaging 24(1): 13-21.

Kather, J.N., Weidner, A., Attenberger, U., Bukschat, Y., Weis, C.A., Weis, M., Schad, L.R. & Zöllner, F.G. 2017. Color-coded visualization of magnetic resonance imaging multiparametric maps. Scientific Reports 7: 41107.

Khalid, N.L., Jayasainan, S.Y. & Hassim, N. 2018. Social media influencers - shaping consumption culture among Malaysian youth. In SHS Web of Conferences. pp. 1-12.

Kim, J.E., Son, J.W., Choi, W.H., Kim, Y.R., Oh, J.H., Lee, S. & Kim, J.K. 2014. Neural responses to various rewards and feedback in the brains of adolescent Internet addicts detected by functional magnetic resonance imaging. Psychiatry and Clinical Neurosciences 68(6): 463-470.

Ko, C.H., Liu, G.C., Hsiao, S., Yen, J.Y., Yang, M.J., Lin, W.C., Yen, C.F. & Chen, C.S. 2009. Brain activities associated with gaming urge of online gaming addiction. Journal of Psychiatric Research 43(7): 739-747.

Kurniawan, Y., Habsari, S.K. & Nurhaeni, I.D.A. 2017. Selfie culture: Investigating the patterns and various expressions of dangerous selfies and the possibility of government’s intervention. In The 2nd Journal of Government and Politics International Conference. pp. 324-332.

Lin, Y.H., Chiang, C.L., Lin, P.H., Chang, L.R., Ko, C.H., Lee, Y.H. & Lin, S.H. 2016. Proposed diagnostic criteria for smartphone addiction. PLoS ONE 11(11): e0163010.

Lindquist, M.A., Loh, J.M., Atlas, L.Y. & Wager, T.D. 2009. Modeling the hemodynamic response function in fMRI: Efficiency, bias and mis-modeling. NeuroImage 45(1 Suppl): S187-S198.

Marchewka, A., Zurawski, L., Jednorog, K. & Grabowska, A. 2014. The Nencki affective picture system (NAPS): Introduction to a novel, standardized, wide-range, high-quality, realistic picture database. Behavior Research Methods 46(2): 596-610.

Mauss, I.B. & Robinson, M.D. 2009. Measures of emotion: A review. Cognition & Emotion 23(2): 209-237.

Nisha, S.N., Fathinul Fikri, A.S., Aida, A.R., Salasiah, M., Hamed, S., Rohit, T., Amei Farina, A.R., Loh, J.L., Mazlyfarina, M. & Subapriya, S. 2020. The objective assessment of the effects on cognition functioning among military personnel exposed to hypobaric-hypoxia: A pilot fMRI study. Medical Journal of Malaysia 75(1): 62-67.

Nisha, S.N., Ling, L.J., Aida, A.R., Sharifat, H., Hamid, S.A., Rahim, E.A., Andrew, B.N., Mustafa, S., Mooi, C.S. & Suppiah, S. 2019. Assessment of problematic facebook use among undergraduate students in UPM correlated with depression, anxiety and stress. International Journal of Public Health and Clinical Sciences 6(4): 113-132.

Niu, G.F., Sun, X.J., Subrahmanyam, K., Kong, F.C., Tian, Y. & Zhou, Z.K. 2016. Cue-induced craving for Internet among Internet addicts. Addictive Behaviors 62: 1-5.

Preacher, K.J. 2002. Calculation for the test of the difference between two independent correlation coefficients. http://quantpsy.org. Accessed on May 8, 2019.

Robinson, T.E. & Berridge, K.C. 2008. Review. The incentive sensitization theory of addiction: Some current issues. Philosophical Transactions of The Royal Society of London. Series B, Biological Sciences 363(1507): 3137-3146.

Sharifat, H., Rashid, A.A. & Suppiah, S. 2018. Systematic review of the utility of functional MRI to investigate internet addiction disorder: Recent updates on resting state and task-based fMRI. Malaysian Journal of Medicine and Health Sciences 14(1): 21-33.

Sherman, L.E., Greenfield, P.M., Hernandez, L.M. & Dapretto, M. 2018. Peer influence via instagram: Effects on brain and behavior in adolescence and young adulthood. Child Development 89(1): 37-47.

Sherman, L.E., Payton, A.A., Hernandez, L.M., Greenfield, P.M. & Dapretto, M. 2016. The power of the like in adolescence: Effects of peer influence on neural and behavioral responses to social media. Psychological Science 27(7): 1027-1035.

Sinha, R. & Li, C.S.R. 2007. Imaging stress- and cue-induced drug and alcohol craving: Association with relapse and clinical implications. Drug and Alcohol Review 26(1): 25-31.

Sun, Y., Ying, H., Seetohul, R.M., Xuemei, W., Ya, Z., Qian, L., Guoqing, X. & Ye, S. 2012. Brain fMRI study of crave induced by cue pictures in online game addicts (male adolescents). Behavioral Brain Research 233(2): 563-576.

Volkow, N.D., Koob, G.F. & McLellan, A.T. 2016. Neurobiologic advances from the brain disease model of addiction. The New England Journal of Medicine 374(4): 363-371.

Volkow, N.D., Wang, G.J., Fowler, J.S., Tomasi, D., Telang, F. & Baler, R. 2010. Addiction: Decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brain's control circuit. Bioessays 32(9): 748-755.

Zhang, J.T., Yao, Y.W., Potenza, M.N., Xia, C.C., Lan, J., Liu, L., Wang, L.J., Liu, B., Ma, S.S. & Fang, X.Y. 2016. Effects of craving behavioral intervention on neural substrates of cue-induced craving in Internet gaming disorder. Neuroimage: Clinical 12: 591-599.

Zhou, Y., Zhan, J. & Luo, J. 2017. Predicting multiple risky behaviors via multimedia content.  10540: 65-73.

 

*Corresponding author; email: subapriya@upm.edu.my

 

 

 

 

previous