Sains Malaysiana 49(12)(2020): 2901-2912

http://dx.doi.org/10.17576/jsm-2020-4912-03

 

Rapid Manipulation of Extracellular Vesicles using Dielectrophoretic Mechanism

(Manipulasi Pantas Vesikel Ekstrasel menggunakan Mekanisme Dielektroforesis)

 

NUR MAS AYU JAMALUDIN1, MUHAMMAD KHAIRULANWAR ABDUL RAHIM1, AZRUL AZLAN HAMZAH1, NADIAH ABU2 & MUHAMAD RAMDZAN BUYONG1*

 

1Institute of Microengineering and Nanotechnology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

Received: 4 May 2020/Accepted: 23 June 2020

 

ABSTRACT

Extracellular vesicles (EVs) are small entities that are released by most cell types. EVs are important form of intercellular communication and a rich source of biomarkers for a wide variety of diseases. Many methods for EVs isolation have been utilized, however, most of them have significant drawbacks including lengthy processing time, high cost, shortfalls in selectivity and surface marker dependency. In consideration of these issues, this paper discussed on the dielectrophoresis (DEP) microelectrode method designed to rapidly isolate EVs from its medium. The advantage of this DEP microelectrode is the capability of isolating EVs using a droplet of 1 µL placed onto the microelectrode within 30 s and 20 V peak-to-peak (Vp-p) of alternating current (AC). The method used in the characterization of sample are dynamic light scattering (DLS) and transmission electron microscopy (TEM); both prove the heterogeneity of EVs’ population and the EVs appear to be spherical with size ranging from 40 to 200 nm. The experimental results from this preliminary experiment show that the DEP microelectrode was able to manipulate EVs as evidenced by the negative dielectrophoresis (NDEP) fluorescent images. Further investigation of grid analysis conducted shows the consistency of the theory and the results presented. Corrected Total Cell Fluorescence (CTCF) values from the grid analysis concluded that the EVs were manipulated to the center of region of interest (ROI). Therefore, this DEP technique suggests a rapid strategy for EVs isolation from its medium in small quantity while maintaining accuracy and cost-effectivity.

 

Keywords: Dielectrophoresis; extracellular vesicles; isolation; manipulation; particle separation

 

ABSTRAK

Vesikel ekstrasel (EV) adalah entiti kecil yang dilepaskan oleh kebanyakan jenis sel. EV adalah bentuk komunikasi antara sel yang penting dan merupakan sumber biopenanda yang kaya untuk pelbagai jenis penyakit. Banyak kaedah untuk pengasingan EV telah digunakan, namun, kebanyakan daripada mereka mempunyai kekurangan yang signifikan termasuk waktu pemprosesan yang panjang, kos yang tinggi, kekurangan pilihan dan kebergantungan penanda permukaan. Berdasarkan permasalahan ini, kajian ini membincangkan kaedah dielektroforesis (DEP) mikroelektrod yang dirancang untuk mengasingkan EV dengan cepat daripada mediumnya. Kelebihan mikroelektrod DEP ini adalah kemampuannya mengasingkan EV menggunakan titisan 1 µL yang diletakkan ke atas mikroelektrod dalam masa 30 saat dan voltan arus ulang alik (AC) yang menggunakan 20 volt puncak-ke-puncak (Vp-p). Kaedah yang digunakan dalam pencirian sampel adalah penyerakan cahaya dinamik (DLS) dan mikroskop elektron transmisi (TEM); kedua-duanya membuktikan keheterogenan populasi EV dan EV kelihatan bulat dengan ukuran antara 40 nm hingga 200 nm. Hasil daripada uji kaji awal menunjukkan bahawa mikroelektrod DEP dapat memanipulasi EV seperti yang dibuktikan oleh imej pendarfluor negatif dielektroforesis (NDEP). Kajian lebih lanjut mengenai analisis grid yang dijalankan menunjukkan ketekalan teori dan hasil yang dikemukakan. Nilai Jumlah Pendarflour Sel Betul (CTCF) daripada analisis grid menyimpulkan bahawa EV dimanipulasi ke pusat rantau tumpuan (ROI). Oleh itu, teknik DEP ini mencadangkan strategi cepat untuk pengasingan EV daripada mediumnya dalam jumlah yang sedikit di samping mengekalkan ketepatan dan keberkesanan kos.

 

Kata kunci: Dielektroforesis; manipulasi; pemisahan zarah; pengasingan; vesikel ekstrasel

 

REFERENCES

Admyre, C., Johansson, S.M., Qazi, K.R., Filén, J.J., Lahesmaa, R., Norman, M., Neve, E.P. A., Scheynius, A. & Gabrielsson, S. 2007. Exosomes with immune modulatory features are present in human breast milk. The Journal of Immunology 179(3): 1969-1978.

Buyong, M.R., Larki, F., Takamura, Y. & Majlis, B.Y. 2017. Tapered microelectrode array system for dielectrophoretically filtration: Fabrication, characterization, and simulation study. Journal of Micro/Nanolithography, MEMS, and MOEMS 16(4): 44501-44508.

Buyong, M.R., Yunas, J., Hamzah, A.A., Majlis, B.Y., Larki, F. & Aziz, N.A. 2015. Design, fabrication and characterization of dielectrophoretic microelectrode array for particle capture. Microelectronics International 32(2): 96-102.

Caby, M.P., Lankar, D., Vincendeau-Scherrer, C., Raposo, G. & Bonnerot, C. 2005. Exosomal-like vesicles are present in human blood plasma. International Immunology 17(7): 879-887.

Clayton, A., Court, J., Navabi, H., Adams, M., Mason, M.D., Hobot, J.A., Newman, G.R. & Jasani, B. 2001. Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. Journal of Immunological Methods 247(1-2): 163-174.

Dixon, C.L., Sheller-Miller, S., Saade, G.R., Fortunato, S.J., Lai, A., Palma, C., Guanzon, D., Salomon, C. & Menon, R. 2018. Amniotic fluid exosome proteomic profile exhibits unique pathways of term and preterm labor. Endocrinology 159(5): 2229-2240.

Doyle, L.M. & Wang, M.Z. 2019. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 8(7): 727-750.

Edgar, J.R. 2016. Q & A: What are exosomes, exactly? BMC Biology 14(46): 1-7.

Gascoyne, P.R.C. & Shim, S. 2014. Isolation of circulating tumor cells by dielectrophoresis. Cancers 6(1): 545-579. doi:10.3390/cancers6010545.

György, B., Szabó, T.G., Pásztói, M., Pál, Z., Misják, P., Aradi, B., László, V., Pállinger, É., Pap, E., Kittel, Á., Nagy, G., Falus, A. & Buzás, E.I. 2011. Membrane vesicles, current state-of-the-art: Emerging role of extracellular vesicles. Cellular and Molecular Life Sciences 68(16): 2667-2688. doi:10.1007/s00018-011-0689-3.

Haqqani, A.S., Delaney, C.E., Tremblay, T.L., Sodja, C., Sandhu, J.K. & Stanimirovic, D.B. 2013. Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells. Fluids and Barriers of the CNS 10(1): 4-15.

Jamaludin, N.M.A., Buyong, M.R., Rahim, M.K.A., Hamzah, A.A., Mailis, B.Y. & Bais, B. 2018. Dielectrophoresis: Characterization of triple-negative breast cancer using clausius-mossotti factor. 2018 IEEE International Conference on Semiconductor Electronics Proceedings (ICSE). pp. 85-88.

Kadaksham, A.T.J., Singh, P. & Aubry, N. 2004. Dielectrophoresis of nanoparticles. Proceedings of ASME International Mechanical Engineering Congress and Exposition, pp. 85-92.

Muralidharan-Chari, V., Clancy, J., Plou, C., Romao, M., Chavrier, P., Raposo, G. & D’Souza-Schorey, C. 2009. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Current Biology 19(22): 1875-1885.

Pegtel, D.M., Peferoen, L. & Amor, S. 2014. Extracellular vesicles as modulators of cell-to-cell communication in the healthy and diseased brain. Philosophical Transactions of the Royal Society B 369: 1-9.

Pisitkun, T., Shen, R.F. & Knepper, M.A. 2004. Identification and proteomic profiling of exosomes in human urine. Proceedings of the National Academy of Sciences of the United States of America 101(36): 13368-13373.

Rahim, M.K.A., Buyong, M.R., Jamaludin, N.M.A., Hamzah, A.A., Siow, K.S. & Majlis, B.Y. 2018. Characterization of permittivity and conductivity for ESKAPE pathogens detection. IEEE International Conference on Semiconductor Electronics Proceedings (ICSE). pp. 132-135.

Rahman, N.A., Ibrahim, F. & Yafouz, B. 2017. Dielectrophoresis for biomedical sciences applications: A review. Sensors 17(3): 449-475.

Raposo, G. & Stoorvogel, W. 2013. Extracellular vesicles: Exosomes, microvesicles, and friends. Journal of Cell Biology 200(4): 373-383.

Sakha, S., Muramatsu, T., Ueda, K. & Inazawa, J. 2016. Exosomal microRNA miR-1246 induces cell motility and invasion through the regulation of DENND2D in oral squamous cell carcinoma. Scientific Reports 6(December): 1-11. doi:10.1038/srep38750.

Shafiee, H., Jahangir, M., Inci, F., Wang, S., Willenbrecht, R.B.M., Giguel, F.F., Tsibris, A.M.N., Kuritzkes, D.R. & Demirci, U. 2013. Acute on-chip HIV detection through label-free electrical sensing of viral nano-lysate. Small 9(15): 2553-2563.

Tetta, C., Ghigo, E., Silengo, L., Deregibus, M.C. & Camussi, G. 2013. Extracellular vesicles as an emerging mechanism of cell-to-cell communication. Endocrine 44(1): 11-19.

Van Niel, G., D’Angelo, G. & Raposo, G. 2018. Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology 19(4): 213-228.

Vojtech, L., Woo, S., Hughes, S., Levy, C., Ballweber, L., Sauteraud, R.P., Strobl, J., Westerberg, K., Gottardo, R., Tewari, M. & Hladik, F. 2014. Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Research 42(11): 7290-7304.

Yunus, F.W., Hamzah, A.A., Norzin, M.S., Buyong, M.R., Yunas, J. & Majlis, B.Y. 2018. Dielectrophoresis: Iron dificient anemic red blood cells for artificial kidney purposes. IEEE International Conference on Semiconductor Electronics Proceedings (ICSE). pp. 5-8.

Zlotogorski-Hurvitz, A., Dayan, D., Chaushu, G., Korvala, J., Salo, T., Sormunen, R. & Vered, M. 2015. Human saliva-derived exosomes: Comparing methods of isolation. Journal of Histochemistry and Cytochemistry63(3): 181-189.

 

*Corresponding author; email: muhdramdzan@ukm.edu.my

 

   

 

 

previous