Sains Malaysiana 49(12)(2020): 2977-2988
http://dx.doi.org/10.17576/jsm-2020-4912-09
Adsorption of Dye on Carbon Microparticles:
Physicochemical Properties during Adsorption, Adsorption Isotherm and Education
for Students with Special Needs
(Penjerapan Pewarna pada Mikrozarah Karbon: Sifat Fizikokimia semasa Penjerapan, Isoterma Penjerapan dan Pendidikan untuk Pelajar Berkeperluan Khas)
RINA MARYANTI1, ASEP BAYU DANI
NANDIYANTO2*, TRYASTUTI IRAWATI BELLINY MANULLANG1,
ACHMAD HUFAD1 & SUNARDI1
1Departemen Pendidikan Khusus, Universitas Pendidikan Indonesia,
Bandung, Indonesia
2Departemen Kimia, Universitas Pendidikan Indonesia, Bandung, Indonesia
Received: 8
August 2020/Accepted: 21 August 2020
ABSTRACT
The
purpose of this study was to demonstrate the adsorption of dye on carbon microparticles. We conducted two experiments: Understanding of
the adsorption of dye on carbon microparticles. We used turmeric solution as a model of dye, in which
this solution was contacted into commercially available carbon microparticles
in the batch-typed adsorption reactor. The measurement results were then
compared to several adsorption isotherm
models, such as Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models; and finding teaching strategies to improve students’ understanding on
the adsorption concept to students with special needs. As for the second part
which is finding strategies to teach the obtained results and their concept of
adsorption to students with special needs, we evaluated the strategies to eight students with intellectual
disabilities in special schools in Kuningan District,
Indonesia using a Single Subject Research method (equipped with pre-test,
post-test, and experimental demonstration). The results showed that carbon can
absorb dye and can be used as an alternative for wastewater treatment. The isotherm models have the linearity
parameter R2 of above 50%, and the most suitable model is
Freundlich. The models also confirmed
favorable adsorption with multilayer structure and physical interaction between
turmeric and carbon microparticles. Demonstrating experiments and informing the
measurement results gave great impacts on students’ comprehension, in which
they have better understanding about the concept of adsorption compared to the
conventional teaching method.
Keywords: Adsorption isotherm; adsorption of carbon; education;
students with special needs; teaching
ABSTRACT
Tujuan kajian ini adalah untuk menunjukkan penjerapan pewarna pada mikrozarah karbon. Dua uji kaji telah dijalankan: Memahami penjerapan pewarna pada mikrozarah karbon. Larutan kunyit digunakan sebagai model pewarna dan larutan ini dihubungkan ke mikrozarah karbon yang tersedia secara komersial dalam reaktor penjerapan jenis batch. Hasil pengukuran kemudian dibandingkan dengan beberapa model isoterma penjerapan, seperti model Langmuir, Freundlich, Temkin dan Dubinin-Radushkevich; dan mencari strategi pengajaran untuk meningkatkan pemahaman pelajar mengenai konsep penjerapan kepada pelajar berkeperluan khas. Bagi bahagian kedua iaitu mencari strategi untuk mengajarkan hasil yang diperoleh dan konsep penjerapan mereka kepada pelajar berkeperluan khas, kami menilai strategi tersebut kepada lapan orang pelajar kurang upaya intelektual di sekolah khas di Kabupaten Kuningan, Indonesia menggunakan kaedah Penyelidikan Subjek Tunggal (dilengkapi dengan ujian pra, ujian pasca dan demonstrasi uji kaji). Hasil kajian menunjukkan bahawa karbon dapat menyerap pewarna dan dapat digunakan sebagai alternatif untuk rawatan air sisa. Model isoterma mempunyai parameter kelinearan R2 lebih 50% dan model yang
paling sesuai ialah Freundlich. Model itu juga mengesahkan penjerapan yang baik dengan struktur pelbagai lapisan dan interaksi fizikal antara mikrozarah kunyit dan karbon. Uji kaji menunjukkan dan pemberitahuan hasil pengukuran memberi impak yang besar terhadap pemahaman pelajar kerana mereka mempunyai pemahaman yang lebih baik mengenai konsep penjerapan berbanding kaedah pengajaran konvensional.
Kata kunci: Isoterma penjerapan; pelajar berkeperluan khusus; pendidikan; pengajaran; penjerapan karbon
REFERENCES
Ayawei, N., Ebelegi,
A.N. & Wankasi, D. 2017. Modelling and
interpretation of adsorption isotherms. Journal
of Chemistry 2017: 1-11.
Baghdadi, M. 2017. UT (University of Tehran) isotherm as a novel and useful
adsorption isotherm for investigation of adsorptive removal of pollutants. Journal of Environmental Chemical
Engineering 5(2): 1906-1919.
Chung, H.K., Kim, W.H., Park, J., Cho, J., Jeong,
T.Y. & Park, P.K., 2015. Application of Langmuir and Freundlich isotherms
to predict adsorbate removal efficiency or required amount of adsorbent. Journal of Industrial and Engineering
Chemistry 28: 241-246.
Gopalan, C.
& Klann, M.C. 2017. The effect of flipped
teaching combined with modified team-based learning on student performance in
physiology. Advances in Physiology
Education 41(3): 363-367.
Hermann, J., DiStasio Jr., R.A. & Tkatchenko, A. 2017. First-principles models for van der
Waals interactions in molecules and materials: Concepts, theory, and
applications. Chemical Reviews 117(6):
4714-4758.
Hidayat, D.S., Rakhmat, C., Fattah, N., Rochyadi,
E., Nandiyanto, A.B.D. & Maryanti,
R. 2020. Understanding archimedes law: What the best
teaching strategies for vocational high school students with hearing
impairment. Journal of Technical
Education and Training 12(1): 229-237.
Largitte, L. & Pasquier,
R. 2016. A review of the kinetics adsorption models and their application to
the adsorption of lead by an activated carbon. Chemical Engineering Research
and Design 109(2016):
495-504.
Lin, R.B., Xiang, S., Xing, H., Zhou, W. & Chen, B. 2019. Exploration
of porous metal-organic frameworks for gas separation and purification. Coordination
Chemistry Reviews 378(2019):
87-103.
Maryanti, R., Hufad,
A., Sunardi & Nandiyanto,
A.B.D. 2020a. Understanding Covid-19 particle contagion through aerosol
droplets for students with special needs. Journal of Engineering Science and
Technology 15(3):
1909-1920.
Maryanti, R., Hufad,
A., Sunardi, Nandiyanto,
A.B.D. & Manullang, T.I.B. 2020b. Understanding
Coronavirus (COVID-19) as a small particle to students with special needs. Horizon 2(1): 121-130.
Nandiyanto, A.B.D. 2020a. Isotherm
adsorption of carbon microparticles prepared from pumpkin (Cucurbita maxima) seeds using two-parameter monolayer adsorption
models and equations. Moroccan Journal of Chemistry 8(3): 745-761.
Nandiyanto, A.B.D., Girsang,
G.C.S., Maryanti, R., Ragadhita,
R., Anggraeni, S., Fauzi,
F.M., Sakinah, P., Astuti,
A.P., Usdiyana, D., Fiandini,
M. & Dewi, M.W. 2020. Isotherm adsorption
characteristics of carbon microparticles prepared from pineapple peel waste. Communications in Science and Technology 5(1): 31-39.
Nandiyanto, A.B.D., Putra, Z.A., Andika, R., Bilad, M.R., Kurniawan, T., Zulhijah,
R. & Hamidah, I. 2017. Porous activated carbon
particles from rice straw waste and their adsorption properties. Journal of
Engineering Science and Technology 12(Special
Issue): 1-11.
Nielsen, L. & Bandosz, T.J. 2016. Analysis of
the competitive adsorption of pharmaceuticals on waste derived materials. Chemical
Engineering Journal 287(2016):
139-147.
Paryanto, P., Arsyad,
M.F. & Aji, M.F.I. 2018. Penentuan nilai kesetimbangan adsorbsi zat warna alami kulit mahoni ke dalam kain dengan proses batch. Jurnal Inovasi Teknik Kimia 3(2):
1-7.
Pyle, D.S., Gray, E.M. & Webb, C.J. 2016. Hydrogen storage in carbon
nanostructures via spillover. International Journal of Hydrogen Energy 41(42): 19098-19113.
Ragadhita, R., Nandiyanto,
A.B.D., Nugraha, W.C. & Mudzakir,
A. 2019. Adsorption isotherm of mesopore-free submicron silica particles from
rice husk. Journal of Engineering Science and Technology 14(4): 2052-2062.
Romero, G.J., Peralta-Videa, J.R.,
Rodrıguez, E., Ramirez, S.L. & Gardea-Torresdey,
J.L. 2005. Determination of thermodynamic parameters of Cr (VI) adsorption from
aqueous solution onto Agave lechuguilla biomass. The Journal of Chemical Thermodynamics 37(4): 343-347.
Stawiński, W., Węgrzyn,
A., Dańko, T., Freitas, O., Figueiredo,
S. & Chmielarz, L. 2017. Acid-base treated
vermiculite as high performance adsorbent: Insights into the mechanism of
cationic dyes adsorption, regeneration, recyclability and stability studies. Chemosphere 173: 107-115.
VanDorn, D., Ravalli, M.T., Small,
M.M., Hillery, B. & Andreescu, S. 2011.
Adsorption of arsenic by iron oxide nanoparticles: A versatile, inquiry-based
laboratory for a high school or college science course. Journal of Chemical
Education 88(8): 1119-1122.
Walkley, G.H. 1973. A sixth-form teaching unit on the langmuir adsorption isotherm. School Science Review 54(189): 709-717.
Widodo,
A.P.A., Hufad, A., Sunardi & Nandiyanto, A.B.D. 2020. Collaborative teaching in heat
transfer for slow learner students. Journal of Engineering Science
and Technology 15(1): 11-21.
Yan, F., Sun, Z., Zhang, H., Sun, X., Jiang, Y. & Bai, Z. 2019. The
fluorescence mechanism of carbon dots, and methods for tuning their emission
color: A review. Microchimica Acta 186(8):
583-593.
Yu, F., Li, Y., Han, S. & Ma, J. 2016. Adsorptive removal of
antibiotics from aqueous solution using carbon materials. Chemosphere 153(2016): 365-385.
Zhang, N.,
Xiao, J., Bénard, P. & Chahine, R. 2019.
Single-and double-bed pressure swing adsorption processes for H2/CO
syngas separation. International Journal of Hydrogen Energy 44(48): 26405-26418.
*Corresponding author; email:
nandiyanto@upi.edu
|